These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27432634)

  • 1. Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF.
    Paré A; Mailhot B; Lévesque SA; Lacroix S
    Brain Behav Immun; 2017 May; 62():1-8. PubMed ID: 27432634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-1β enables CNS access to CCR2
    Paré A; Mailhot B; Lévesque SA; Juzwik C; Ignatius Arokia Doss PM; Lécuyer MA; Prat A; Rangachari M; Fournier A; Lacroix S
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1194-E1203. PubMed ID: 29358392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prophylactic treatment against GM-CSF, but not IL-17, abolishes relapses in a chronic murine model of multiple sclerosis.
    Uyttenhove C; Gaignage M; Donckers D; Nasr Z; Cheou P; van Snick J; D'Auria L; van Pesch V
    Eur J Immunol; 2018 Nov; 48(11):1883-1891. PubMed ID: 30216414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Granulocyte-Macrophage Colony-Stimulating Factor in Murine Models of Multiple Sclerosis.
    Monaghan KL; Wan ECK
    Cells; 2020 Mar; 9(3):. PubMed ID: 32143326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GM-CSF in Neuroinflammation: Licensing Myeloid Cells for Tissue Damage.
    Croxford AL; Spath S; Becher B
    Trends Immunol; 2015 Oct; 36(10):651-662. PubMed ID: 26431942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation.
    Hesske L; Vincenzetti C; Heikenwalder M; Prinz M; Reith W; Fontana A; Suter T
    Brain; 2010 Jun; 133(Pt 6):1637-54. PubMed ID: 20424288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis.
    Skundric DS; Cruikshank WW; Montgomery PC; Lisak RP; Tse HY
    Cytokine; 2015 Oct; 75(2):234-48. PubMed ID: 25703787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis.
    Ponomarev ED; Shriver LP; Maresz K; Pedras-Vasconcelos J; Verthelyi D; Dittel BN
    J Immunol; 2007 Jan; 178(1):39-48. PubMed ID: 17182538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.
    Russi AE; Walker-Caulfield ME; Guo Y; Lucchinetti CF; Brown MA
    J Autoimmun; 2016 Sep; 73():100-10. PubMed ID: 27396526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease.
    Pierson ER; Goverman JM
    JCI Insight; 2017 Apr; 2(7):e92362. PubMed ID: 28405624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL-9 Controls Central Nervous System Autoimmunity by Suppressing GM-CSF Production.
    Yoshimura S; Thome R; Konno S; Mari ER; Rasouli J; Hwang D; Boehm A; Li Y; Zhang GX; Ciric B; Rostami A
    J Immunol; 2020 Feb; 204(3):531-539. PubMed ID: 31852750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective arylpiperazine dopaminergic/serotonergic ligands suppress experimental autoimmune encephalomyelitis in rats.
    Popovic M; Stanojevic Z; Tosic J; Isakovic A; Paunovic V; Petricevic S; Martinovic T; Ciric D; Kravic-Stevovic T; Soskic V; Kostic-Rajacic S; Shakib K; Bumbasirevic V; Trajkovic V
    J Neurochem; 2015 Oct; 135(1):125-38. PubMed ID: 26083644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-7/IL-7 Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets Involved in Experimental Autoimmune Encephalomyelitis.
    Arbelaez CA; Glatigny S; Duhen R; Eberl G; Oukka M; Bettelli E
    J Immunol; 2015 Sep; 195(5):1974-83. PubMed ID: 26223651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF.
    El-Behi M; Ciric B; Dai H; Yan Y; Cullimore M; Safavi F; Zhang GX; Dittel BN; Rostami A
    Nat Immunol; 2011 Jun; 12(6):568-75. PubMed ID: 21516111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis.
    Birkner K; Wasser B; Loos J; Plotnikov A; Seger R; Zipp F; Witsch E; Bittner S
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28914804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23.
    Grifka-Walk HM; Giles DA; Segal BM
    Eur J Immunol; 2015 Oct; 45(10):2780-6. PubMed ID: 26220255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of CD4+ CD25+ regulatory T cells confers susceptibility to experimental autoimmune encephalomyelitis (EAE) in GM-CSF-deficient Csf2-/- mice.
    Ghosh D; Curtis AD; Wilkinson DS; Mannie MD
    J Leukoc Biol; 2016 Oct; 100(4):747-760. PubMed ID: 27256565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.
    Hammer LA; Waldner H; Zagon IS; McLaughlin PJ
    Exp Biol Med (Maywood); 2016 Jan; 241(1):71-8. PubMed ID: 26202376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis.
    Lin CC; Edelson BT
    J Immunol; 2017 Jun; 198(12):4553-4560. PubMed ID: 28583987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.
    Souza PS; Gonçalves ED; Pedroso GS; Farias HR; Junqueira SC; Marcon R; Tuon T; Cola M; Silveira PCL; Santos AR; Calixto JB; Souza CT; de Pinho RA; Dutra RC
    Mol Neurobiol; 2017 Aug; 54(6):4723-4737. PubMed ID: 27447807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.