These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 27432986)
1. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Chen W; Koide RT; Adams TS; DeForest JL; Cheng L; Eissenstat DM Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8741-6. PubMed ID: 27432986 [TBL] [Abstract][Full Text] [Related]
2. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. Liu B; Li H; Zhu B; Koide RT; Eissenstat DM; Guo D New Phytol; 2015 Oct; 208(1):125-36. PubMed ID: 25925733 [TBL] [Abstract][Full Text] [Related]
3. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. Eissenstat DM; Kucharski JM; Zadworny M; Adams TS; Koide RT New Phytol; 2015 Oct; 208(1):114-24. PubMed ID: 25970701 [TBL] [Abstract][Full Text] [Related]
4. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Cheng L; Chen W; Adams TS; Wei X; Li L; McCormack ML; DeForest JL; Koide RT; Eissenstat DM Ecology; 2016 Oct; 97(10):2815-2823. PubMed ID: 27859112 [TBL] [Abstract][Full Text] [Related]
5. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Liese R; Lübbe T; Albers NW; Meier IC Tree Physiol; 2018 Jan; 38(1):83-95. PubMed ID: 29126247 [TBL] [Abstract][Full Text] [Related]
6. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Tedersoo L; Bahram M Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1857-1880. PubMed ID: 31270944 [TBL] [Abstract][Full Text] [Related]
7. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. Koller R; Rodriguez A; Robin C; Scheu S; Bonkowski M New Phytol; 2013 Jul; 199(1):203-211. PubMed ID: 23534902 [TBL] [Abstract][Full Text] [Related]
9. Mycorrhizal associations of temperate forest seedlings mediate rhizodeposition, but not soil carbon storage, under elevated nitrogen availability. Fitch AA; Goldsmith SB; Lankau RA; Wurzburger N; Shortt ZD; Vrattos A; Laurent EN; Hicks Pries CE Glob Chang Biol; 2024 Aug; 30(8):e17446. PubMed ID: 39109391 [TBL] [Abstract][Full Text] [Related]
10. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. Kafle A; Frank HER; Rose BD; Garcia K J Exp Bot; 2022 Mar; 73(5):1288-1300. PubMed ID: 34791191 [TBL] [Abstract][Full Text] [Related]
11. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. Phillips RP; Brzostek E; Midgley MG New Phytol; 2013 Jul; 199(1):41-51. PubMed ID: 23713553 [TBL] [Abstract][Full Text] [Related]
12. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences. Seven J; Polle A PLoS One; 2014; 9(12):e114672. PubMed ID: 25486253 [TBL] [Abstract][Full Text] [Related]
13. Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest. Lang C; Polle A Tree Physiol; 2011 May; 31(5):531-8. PubMed ID: 21636693 [TBL] [Abstract][Full Text] [Related]
14. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Holste EK; Kobe RK; Gehring CA Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856 [TBL] [Abstract][Full Text] [Related]
15. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Pena R; Tibbett M Appl Microbiol Biotechnol; 2024 Sep; 108(1):461. PubMed ID: 39249589 [TBL] [Abstract][Full Text] [Related]
16. An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant. Xia T; Wang Y; He Y; Wu C; Shen K; Tan Q; Kang L; Guo Y; Wu B; Han X PLoS One; 2020; 15(6):e0234410. PubMed ID: 32516341 [TBL] [Abstract][Full Text] [Related]
17. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest. Jia LQ; Chen GS; Zhang LH; Chen TT; Jiang Q; Chen YH; Fan AL; Wang X Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):529-537. PubMed ID: 33650362 [TBL] [Abstract][Full Text] [Related]
18. Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. Liang Y; Pan F; Jiang Z; Li Q; Pu J; Liu K BMC Plant Biol; 2022 Apr; 22(1):188. PubMed ID: 35410135 [TBL] [Abstract][Full Text] [Related]
19. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. Cheeke TE; Phillips RP; Brzostek ER; Rosling A; Bever JD; Fransson P New Phytol; 2017 Apr; 214(1):432-442. PubMed ID: 27918073 [TBL] [Abstract][Full Text] [Related]
20. Arbuscular Mycorrhizal Tree Communities Have Greater Soil Fungal Diversity and Relative Abundances of Saprotrophs and Pathogens than Ectomycorrhizal Tree Communities. Eagar AC; Mushinski RM; Horning AL; Smemo KA; Phillips RP; Blackwood CB Appl Environ Microbiol; 2022 Jan; 88(1):e0178221. PubMed ID: 34669435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]