These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27433626)

  • 1. Improvement of Resistive Random Access Memory Device Performance via Embedding of Low-K Dielectric Layer.
    Jang SH; Ryu JT; Jung HS; Kim TW
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1587-91. PubMed ID: 27433626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical characteristics of metal oxide based multi-layer vertical resistive switching memories.
    Jang SH; Kim DH; Yoon DY; Kim TW
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8201-4. PubMed ID: 25958500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface-modified unipolar resistive random access memory (RRAM) structure for low-power application.
    Ryoo KC; Oh JH; Jung S; Jeong H; Park BG
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5263-9. PubMed ID: 22966555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Al Addition on Resistive-Switching Characteristics of Solution Processed Zn-Sn-O ReRAMs.
    Kim TW; Cho WJ
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6099-6105. PubMed ID: 31026916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable, solution-processed quaternary oxide thin film-based resistive switching random access memory devices via global and local stoichiometric manipulation strategy.
    Lee D; Chun MC; Ko H; Kang BS; Kim J
    Nanotechnology; 2020 Mar; 31(24):245202. PubMed ID: 32155592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.
    Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Power, High-Performance, Non-volatile Inkjet-Printed HfO
    Vescio G; Martín G; Crespo-Yepes A; Claramunt S; Alonso D; López-Vidrier J; Estradé S; Porti M; Rodríguez R; Peiró F; Cornet A; Cirera A; Nafría M
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23659-23666. PubMed ID: 31180626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-invasive approach to the resistive switching physical model of ultra-thin organic-inorganic dielectric-based ReRAMs.
    Martinez A; Cho BJ; Kim MJ
    Nanoscale; 2023 Nov; 15(46):18794-18805. PubMed ID: 37960930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories.
    Chen S; Valov I
    Adv Mater; 2022 Jan; 34(3):e2105022. PubMed ID: 34695257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope.
    Lanza M
    Materials (Basel); 2014 Mar; 7(3):2155-2182. PubMed ID: 28788561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPt
    Wang LG; Cao ZY; Qian X; Zhu L; Cui DP; Li AD; Wu D
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6634-6643. PubMed ID: 28139921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved uniformity in resistive switching behaviors by embedding Cu nanodots.
    Yuan M; Dong X; Niu Y; Liu B; Chen X; Zheng D; Dong A; Wang H
    Nanotechnology; 2020 Oct; 31(40):405301. PubMed ID: 32512546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid.
    Oh SI; Rani JR; Hong SM; Jang JH
    Nanoscale; 2017 Oct; 9(40):15314-15322. PubMed ID: 28820212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Electrodeposited Bilayer Structures for Reliable Resistive Switching with Self-Compliance.
    Kim MK; Lee JS
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32918-32924. PubMed ID: 27934194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance bi-layer atomic switching devices.
    Ju JH; Jang SK; Son H; Park JH; Lee S
    Nanoscale; 2017 Jun; 9(24):8373-8379. PubMed ID: 28594423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Oxygen Vacancies on Switching Characteristics of TiO(x) Resistive Memories.
    Zheng ZW; Hsu HH; Chen PC; Cheng CH
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4431-4. PubMed ID: 26369061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials.
    Li Y; Long S; Liu Q; Lv H; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28417548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer.
    Li Y; Long S; Lv H; Liu Q; Wang Y; Zhang S; Lian W; Wang M; Zhang K; Xie H; Liu S; Liu M
    Nanotechnology; 2011 Jun; 22(25):254028. PubMed ID: 21572216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemically prepared oxides for resistive switching memories.
    Zaffora A; Di Quarto F; Habazaki H; Valov I; Santamaria M
    Faraday Discuss; 2019 Feb; 213(0):165-181. PubMed ID: 30357186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of Cu-Doping on the Performance of La-Based RRAM Devices.
    Wang Y; Liu H; Wang X; Zhao L
    Nanoscale Res Lett; 2019 Jul; 14(1):224. PubMed ID: 31289960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.