These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27433641)

  • 1. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part I. Reduction and Carburization Behavior.
    Chun DH; Park JC; Rhim GB; Lee HT; Yang JI; Jung H
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1660-4. PubMed ID: 27433641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part II. Effects of Activation Gases on the Catalytic Performance.
    Rhim GB; Hong SY; Park JC; Jung H; Rhee YW; Chun DH
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1793-7. PubMed ID: 27433672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on nanosized iron based modified catalyst for Fischer-Tropsch synthesis application.
    Park M; Kang JS; Na KP; Lee SD; Awate SV; Moon DJ
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1447-50. PubMed ID: 21456209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts.
    Ali S; Mohd Zabidi NA; Subbarao D
    Chem Cent J; 2011 Nov; 5():68. PubMed ID: 22047220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study.
    Bulavchenko OA; Vinokurov ZS; Saraev AA; Tsapina AM; Trigub AL; Gerasimov EY; Gladky AY; Fedorov AV; Yakovlev VA; Kaichev VV
    Inorg Chem; 2019 Apr; 58(8):4842-4850. PubMed ID: 30946575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts.
    de Smit E; de Groot FM; Blume R; Hävecker M; Knop-Gericke A; Weckhuysen BM
    Phys Chem Chem Phys; 2010 Jan; 12(3):667-80. PubMed ID: 20066352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 Hydrogenation on Carbides Formed in situ on Carbon-Supported Iron-Based Catalysts in High-Density Supercritical Medium.
    Bogdan TV; Koklin AE; Mishanin II; Chernavsky PA; Pankratov DA; Kim OA; Bogdan V
    Chempluschem; 2024 Jul; ():e202400327. PubMed ID: 39012805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe
    Abbas M; Zhang J; Lin K; Chen J
    Ultrason Sonochem; 2018 Apr; 42():271-282. PubMed ID: 29429670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z; Highfield J; Lin M; Teo J; Han YF
    Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts.
    Xu J; Bartholomew CH
    J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.
    Yong S; Park JC; Lee HT; Yang JI; Hong S; Jung H; Chun DH
    J Nanosci Nanotechnol; 2016 Feb; 16(2):2014-8. PubMed ID: 27433720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests.
    Comazzi A; Pirola C; Longhi M; Bianchi CL; Suslick KS
    Ultrason Sonochem; 2017 Jan; 34():774-780. PubMed ID: 27773304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of porous Fe@C nanohybrids from natural magnetite as excellent Fischer-Tropsch catalysts.
    Zhang Q; Gu J; Chen J; Qiu S; Wang T
    Chem Commun (Camb); 2020 Apr; 56(33):4523-4526. PubMed ID: 32292972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO
    Ni Z; Qin H; Kang S; Bai J; Wang Z; Li Y; Zheng Z; Li X
    J Colloid Interface Sci; 2018 Apr; 516():16-22. PubMed ID: 29408102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-Assisted Preparation of CoRu/SiO₂ Catalysts for Enhanced Fischer-Tropsch Synthesis Performance: Effect of Plasma Atmosphere.
    Gao S; Wang B; Hong J; Zhang Y; Jin S; Sun F; Li J
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1232-1237. PubMed ID: 31383123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts.
    Gümüşlü Gür G; Atik Ö
    Turk J Chem; 2022; 46(4):941-955. PubMed ID: 37538761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-sized cobalt based Fischer-Tropsch catalysts for gas-to-liquid process applications.
    Kang JS; Awate SV; Lee YJ; Kim SJ; Park MJ; Lee SD; Hong SI; Moon DJ
    J Nanosci Nanotechnol; 2010 May; 10(5):3700-4. PubMed ID: 20359031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facet sensitivity of iron carbides in Fischer-Tropsch synthesis.
    Wu W; Luo J; Zhao J; Wang M; Luo L; Hu S; He B; Ma C; Li H; Zeng J
    Nat Commun; 2024 Jul; 15(1):6108. PubMed ID: 39030277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hcp-Co Nanowires Grown on Metallic Foams as Catalysts for Fischer-Tropsch Synthesis.
    Harmel J; Peres L; Estrader M; Berliet A; Maury S; Fécant A; Chaudret B; Serp P; Soulantica K
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10579-10583. PubMed ID: 29893037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.