These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27433695)

  • 1. Studies on the Role of Nitrogen in the Feed for Fischer-Tropsch Synthesis Under Fixed-Bed Reactor System.
    Hong GH; Jung JS; Kim NY; Lee SY; Moon DJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1894-7. PubMed ID: 27433695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Cobalt Loading on Fischer Tropsch Synthesis Over Silicon Carbide Supported Catalyst.
    Lee JS; Jung JS; Moon DJ
    J Nanosci Nanotechnol; 2015 Jan; 15(1):396-9. PubMed ID: 26328368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor.
    Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA
    ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer-Tropsch Synthesis.
    Stavitskaya A; Mazurova K; Kotelev M; Eliseev O; Gushchin P; Glotov A; Kazantsev R; Vinokurov V; Lvov Y
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32290415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on nanosized iron based modified catalyst for Fischer-Tropsch synthesis application.
    Park M; Kang JS; Na KP; Lee SD; Awate SV; Moon DJ
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1447-50. PubMed ID: 21456209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of Fe & Co perovskite catalyst in Fischer-Tropsch synthesis.
    Moshtari B; Hashemabadi SH; Zamani Y
    Sci Rep; 2024 Apr; 14(1):9189. PubMed ID: 38649434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO
    Ni Z; Qin H; Kang S; Bai J; Wang Z; Li Y; Zheng Z; Li X
    J Colloid Interface Sci; 2018 Apr; 516():16-22. PubMed ID: 29408102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature.
    Cai X; Sun W; Xu C; Cao L; Yang J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18609-20. PubMed ID: 27301438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor.
    Nasser AH; Guo L; ELnaggar H; Wang Y; Guo X; AbdelMoneim A; Tsubaki N
    RSC Adv; 2018 Apr; 8(27):14854-14863. PubMed ID: 35541361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts.
    Bradley MJ; Ananth R; Willauer HD; Baldwin JW; Hardy DR; Williams FW
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28930186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The remarkable effect of oxygen on the N2 selectivity of water catalytic denitrification by hydrogen.
    Constantinou CL; Costa CN; Efstathiou AM
    Environ Sci Technol; 2007 Feb; 41(3):950-6. PubMed ID: 17328208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-assisted impregnation for high temperature Fischer-Tropsch catalysts.
    Louyot P; Neagoe C; Galli F; Pirola C; Patience GS; Boffito DC
    Ultrason Sonochem; 2018 Nov; 48():523-531. PubMed ID: 30080581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis.
    Jean-Marie A; Griboval-Constant A; Khodakov AY; Monflier E; Diehl F
    Chem Commun (Camb); 2011 Oct; 47(38):10767-9. PubMed ID: 21874176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.
    Go GS; Go YJ; Lee HJ; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1855-8. PubMed ID: 27433687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct production of olefins
    Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y
    RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable production of green feed from carbon dioxide and hydrogen.
    Landau MV; Vidruk R; Herskowitz M
    ChemSusChem; 2014 Mar; 7(3):785-94. PubMed ID: 24678062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid synthesis from CO-N2 and CO-N2-H2 gas mixtures via complex organic compounds.
    Miyakawa S; Kobayashi K; Sawaoka AB
    Adv Space Res; 1999; 24(4):465-8. PubMed ID: 11543333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure.
    Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5259-63. PubMed ID: 26373119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.