These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27433698)

  • 1. The Effect of Buffer Layer on ZnO Nanorods on PES Substrate.
    Ock J; Lee H; Kim S; Jang N; Kim H
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1907-10. PubMed ID: 27433698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of buffer layer thickness on the growth properties of hydrothermally grown ZnO nanorods.
    Kim AR; Lee JY; Jang BR; Kim HS; Cho YJ; Park HK; Jang NW; Kim JH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1409-12. PubMed ID: 21456200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: Effect of ZnO buffer layer.
    Hammed NA; Aziz AA; Usman AI; Qaeed MA
    Ultrason Sonochem; 2019 Jan; 50():172-181. PubMed ID: 30245203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled growth of ZnO nanomaterials via hydrothermal method: effect of buffer layer.
    Cuong TV; Tien HN; Van Luan H; Chung JS; Shin EW; Hur SH; Kim EJ
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3313-6. PubMed ID: 22849114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Transparent Superhydrophobic Surface from ZnO Nanorods.
    Kim HM; Lee CH; Kwon J; Kim J; Kim B
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1772-1778. PubMed ID: 33404446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of seed layers on structural, morphological, and optical properties of ZnO nanorods.
    Lee GJ; Min SK; Oh CH; Leel Y; Lim H; Cheong H; Nam HJ; Hwangbo CK; Min SK; Han SH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):511-7. PubMed ID: 21446487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seedless Hydrothermal Growth of ZnO Nanorods as a Promising Route for Flexible Tactile Sensors.
    Cesini I; Kowalczyk M; Lucantonio A; D'Alesio G; Kumar P; Camboni D; Massari L; Pingue P; DeSimone A; Morgera AF; Oddo CM
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32438635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods.
    Liang YC; Lo YR; Wang CC; Xu NC
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of seed layer patterns on the structural characteristics of hydrothermally grown ZnO nanorods.
    Kim AR; Lee JH; Kim CH; Kim HS; Baek KH; Do LM
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7319-21. PubMed ID: 22103186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure-Dependent Visible-Light Driven Photoactivity of Sputtering-Assisted Synthesis of Sulfide-Based Visible-Light Sensitizer onto ZnO Nanorods.
    Liang YC; Chung CC; Lo YJ; Wang CC
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabriction of ZnO Nanorods with Strong UV Absorption and Different Hydrophobicity on Foamed Nickel under Different Hydrothermal Conditions.
    Li X; Chen X; Yi Z; Zhou Z; Tang Y; Yi Y
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30818788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction.
    Ke NH; Trinh le TT; Phung PK; Loan PT; Tuan DA; Truong NH; Tran CV; Hung le VT
    Springerplus; 2016; 5(1):710. PubMed ID: 27375979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid ZnO Nanorod Grafted Carbon Fiber Reinforced Polymer Composites; Randomly versus Radially Aligned Long ZnO Nanorods Growth.
    Boroujeni AY; Al-Haik M; Emami A; Kalhor R
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4182-4188. PubMed ID: 29442760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic effects of ZnO nanorods grown by sonochemical decomposition of zinc acetate dihydrate.
    Cho SC; Lee HS; Sohn SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6080-4. PubMed ID: 22966712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in the Grain Growth of Plasma-Treated Nano-Sized ZnO Films and Their Characterization.
    Chen M; Chou CC; Lin CC; Koo HS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9163-70. PubMed ID: 26726662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.
    Rao AD; Karalatti S; Thomas T; Ramamurthy PC
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16792-9. PubMed ID: 25238197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Zn2+ source concentration on hydrothermally grown ZnO nanorods.
    Kim AR; Lee JY; Jang BR; Lee JY; Kim HS; Jang NW
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6395-9. PubMed ID: 22121722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ZnO nanostructures grown on Si and SiO2 substrates.
    Lee S; Park E; Lee J; Park T; Lee SH; Kim JY; Yi W
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6264-8. PubMed ID: 24205642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent and flexible ZnO nanorods induced by thermal dissipation annealing without polymer substrate deformation for next-generation wearable devices.
    Kim D; Leem JY
    RSC Adv; 2021 May; 11(29):17538-17546. PubMed ID: 35480169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of using ALD-grown ZnO buffer layers on the properties of indium tin oxide grown by chemical solution deposition.
    O'Brien S; Povey IM; Hamilton JA; Kingsley A; Thony P; Perraud S; Pemble ME
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8354-7. PubMed ID: 22097583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.