These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 27433782)
41. Reversible restructuring of aqueous block copolymer assemblies through stimulus-induced changes in amphiphilicity. Sundararaman A; Stephan T; Grubbs RB J Am Chem Soc; 2008 Sep; 130(37):12264-5. PubMed ID: 18722446 [TBL] [Abstract][Full Text] [Related]
42. Room temperature aqueous self-assembly of poly(ethylene glycol)-poly(4-vinyl pyridine) block copolymers: From spherical to worm-like micelles. Rodrigues DP; Costa JRC; Rocha N; Góis JR; Serra AC; Coelho JFJ Colloids Surf B Biointerfaces; 2016 Sep; 145():447-453. PubMed ID: 27232308 [TBL] [Abstract][Full Text] [Related]
43. Molecular arrangement of symmetric and non-symmetric triblock copolymers of poly(ethylene oxide) and poly(isobutylene) at the air/water interface. Fuchs C; Hussain H; Schwieger C; Schulz M; Binder WH; Kressler J J Colloid Interface Sci; 2015 Jan; 437():80-89. PubMed ID: 25313470 [TBL] [Abstract][Full Text] [Related]
44. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Danafar H; Rostamizadeh K; Davaran S; Hamidi M Drug Dev Ind Pharm; 2014 Oct; 40(10):1411-20. PubMed ID: 23944838 [TBL] [Abstract][Full Text] [Related]
45. Two-dimensional self-assembly of linear poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers at the air-water interface. Joncheray TJ; Denoncourt KM; Meier MA; Schubert US; Duran RS Langmuir; 2007 Feb; 23(5):2423-9. PubMed ID: 17243736 [TBL] [Abstract][Full Text] [Related]
46. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Zhang J; Wang LQ; Wang H; Tu K Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309 [TBL] [Abstract][Full Text] [Related]
47. Core-shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Ma C; Pan P; Shan G; Bao Y; Fujita M; Maeda M Langmuir; 2015 Feb; 31(4):1527-36. PubMed ID: 25555131 [TBL] [Abstract][Full Text] [Related]
48. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone). Safaei Nikouei N; Lavasanifar A Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641 [TBL] [Abstract][Full Text] [Related]
49. Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial Instabilities. Zhu J; Hayward RC J Am Chem Soc; 2008 Jun; 130(23):7496-502. PubMed ID: 18479130 [TBL] [Abstract][Full Text] [Related]
50. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. Schwieger C; Achilles A; Scholz S; Rüger J; Bacia K; Saalwaechter K; Kressler J; Blume A Soft Matter; 2014 Sep; 10(33):6147-60. PubMed ID: 24942348 [TBL] [Abstract][Full Text] [Related]
51. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface. Røn T; Javakhishvili I; Jankova K; Hvilsted S; Lee S Langmuir; 2013 Jun; 29(25):7782-92. PubMed ID: 23725290 [TBL] [Abstract][Full Text] [Related]
52. Controlled synthesis and interface properties of new amphiphilic PCL-g-PEO copolymers. Rieger J; Dubois P; Jérôme R; Jérôme C Langmuir; 2006 Aug; 22(18):7471-9. PubMed ID: 16922523 [TBL] [Abstract][Full Text] [Related]
53. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data. Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550 [TBL] [Abstract][Full Text] [Related]
54. Nanosphere size control by varying the ratio of poly(ester amide) block copolymer blends. Lima MRN; Devore DI; Kohn J J Colloid Interface Sci; 2022 Oct; 623():247-256. PubMed ID: 35588632 [TBL] [Abstract][Full Text] [Related]
55. Multicompartment Vesicles Formation by Emulsification-Induced Assembly of Poly(ethylene oxide)-block-poly(ε-caprolactone) and Their Dual-Loading Capability. Jin SM; Jeon J; Park MK; Kim GH; Lee E Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210491 [TBL] [Abstract][Full Text] [Related]
56. Homopolymer induced aggregation of poly(ethylene oxide)n-b-poly(butylene oxide)m polymersomes. Smart TP; Ryan AJ; Howse JR; Battaglia G Langmuir; 2010 May; 26(10):7425-30. PubMed ID: 19780557 [TBL] [Abstract][Full Text] [Related]
57. Mesoscale simulation of the effect of a lactide segment on the nanostructure of star poly(ethylene glycol-co-lactide)-acrylate macromonomers in aqueous solution. Moeinzadeh S; Jabbari E J Phys Chem B; 2012 Feb; 116(5):1536-43. PubMed ID: 22236036 [TBL] [Abstract][Full Text] [Related]
58. Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Arifin DR; Palmer AF Biomacromolecules; 2005; 6(4):2172-81. PubMed ID: 16004460 [TBL] [Abstract][Full Text] [Related]
59. A direct probe of the interplay between bilayer morphology and surface reactivity in polymersomes. Chang YW; Silas JA; Ugaz VM Langmuir; 2010 Jul; 26(14):12132-9. PubMed ID: 20578755 [TBL] [Abstract][Full Text] [Related]
60. Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers. Xu L; Zhang Z; Wang F; Xie D; Yang S; Wang T; Feng L; Chu C J Colloid Interface Sci; 2013 Mar; 393():174-81. PubMed ID: 23211870 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]