These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27434086)

  • 1. Muscle Fatigue from the Perspective of a Single Crossbridge.
    Debold EP; Fitts RH; Sundberg CW; Nosek TM
    Med Sci Sports Exerc; 2016 Nov; 48(11):2270-2280. PubMed ID: 27434086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent insights into the molecular basis of muscular fatigue.
    Debold EP
    Med Sci Sports Exerc; 2012 Aug; 44(8):1440-52. PubMed ID: 22330018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay.
    Debold EP; Longyear TJ; Turner MA
    J Appl Physiol (1985); 2012 Nov; 113(9):1413-22. PubMed ID: 23019317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.
    Nelson CR; Debold EP; Fitts RH
    Am J Physiol Cell Physiol; 2014 Nov; 307(10):C939-50. PubMed ID: 25186012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidosis decreases the Ca
    Unger M; Debold EP
    Am J Physiol Cell Physiol; 2019 Oct; 317(4):C714-C718. PubMed ID: 31339771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms.
    Woodward M; Debold EP
    Front Physiol; 2018; 9():862. PubMed ID: 30042692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue.
    Karatzaferi C; Franks-Skiba K; Cooke R
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R948-55. PubMed ID: 18077511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin.
    Jarvis K; Woodward M; Debold EP; Walcott S
    J Muscle Res Cell Motil; 2018 Aug; 39(3-4):135-147. PubMed ID: 30382520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depressed contractile performance and reduced fatigue resistance in single skinned fibers of soleus muscle after long-term disuse in rats.
    Udaka J; Terui T; Ohtsuki I; Marumo K; Ishiwata S; Kurihara S; Fukuda N
    J Appl Physiol (1985); 2011 Oct; 111(4):1080-7. PubMed ID: 21719722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent insights into muscle fatigue at the cross-bridge level.
    Debold EP
    Front Physiol; 2012; 3():151. PubMed ID: 22675303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of compressed skinned skeletal muscle fibers to conditions that simulate fatigue.
    Myburgh KH; Cooke R
    J Appl Physiol (1985); 1997 Apr; 82(4):1297-304. PubMed ID: 9104868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cross-bridge cycle and skeletal muscle fatigue.
    Fitts RH
    J Appl Physiol (1985); 2008 Feb; 104(2):551-8. PubMed ID: 18162480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle contraction and fatigue. The role of adenosine 5'-diphosphate and inorganic phosphate.
    McLester JR
    Sports Med; 1997 May; 23(5):287-305. PubMed ID: 9181667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Acidosis in Fatigue: Pro Perspective.
    Fitts RH
    Med Sci Sports Exerc; 2016 Nov; 48(11):2335-2338. PubMed ID: 27755382
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin filament activation and unloaded shortening velocity of rabbit skinned muscle fibres.
    Morris CA; Tobacman LS; Homsher E
    J Physiol; 2003 Jul; 550(Pt 1):205-15. PubMed ID: 12730342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The myofibrillar complex and fatigue: a review.
    Vandenboom R
    Can J Appl Physiol; 2004 Jun; 29(3):330-56. PubMed ID: 15199230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber type and temperature dependence of inorganic phosphate: implications for fatigue.
    Debold EP; Dave H; Fitts RH
    Am J Physiol Cell Physiol; 2004 Sep; 287(3):C673-81. PubMed ID: 15128502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.