These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27434086)

  • 21. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impairment of Ca(2+) release in single Xenopus muscle fibers fatigued at varied extracellular PO(2).
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2000 May; 88(5):1743-8. PubMed ID: 10797138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D; Zhao J; Jones M; Zhi G; Stull J; Potter JD
    J Appl Physiol (1985); 2002 Apr; 92(4):1661-70. PubMed ID: 11896035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue.
    Steele DS; Duke AM
    Acta Physiol Scand; 2003 Sep; 179(1):39-48. PubMed ID: 12940937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myofibrillar fatigue versus failure of activation.
    Edman KA
    Adv Exp Med Biol; 1995; 384():29-43. PubMed ID: 8585458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human muscle fatigue: the significance of muscle fibre type variability studied using a micro-dissection approach.
    Sargeant AJ; de Haan A
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():5-16. PubMed ID: 17242487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of three-state docking of myosin S1 with actin in force generation.
    Geeves MA; Conibear PB
    Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Associations between force and fatigue in fast-twitch motor units of a cat hindlimb muscle.
    Laouris Y; Bevan L; Reinking RM; Stuart DG
    Can J Physiol Pharmacol; 2004; 82(8-9):577-88. PubMed ID: 15523515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 degrees C.
    Bruton JD; Lännergren J; Westerblad H
    J Appl Physiol (1985); 1998 Aug; 85(2):478-83. PubMed ID: 9688723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Smooth muscle myosin: a high force-generating molecular motor.
    VanBuren P; Guilford WH; Kennedy G; Wu J; Warshaw DM
    Biophys J; 1995 Apr; 68(4 Suppl):256S-258S; 258S-259S. PubMed ID: 7787086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers.
    Schoenberg M
    Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers.
    Nosek TM; Fender KY; Godt RE
    Science; 1987 Apr; 236(4798):191-3. PubMed ID: 3563496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of fatigue on depolarization- and caffeine-induced contractures of skinned fibres.
    Williams JH
    Acta Physiol Scand; 2004 Mar; 180(3):265-9. PubMed ID: 14962008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue and recovery after high-intensity exercise part I: neuromuscular fatigue.
    Lattier G; Millet GY; Martin A; Martin V
    Int J Sports Med; 2004 Aug; 25(6):450-6. PubMed ID: 15346234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects on Ca(2+)-activated tension due to a synthetic NH2-terminal actin peptide in single skeletal muscle fibers.
    Metzger JM
    Am J Physiol; 1995 Nov; 269(5 Pt 1):C1193-9. PubMed ID: 7491909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue.
    Williams JH; Ward CW; Spangenburg EE; Nelson RM
    J Appl Physiol (1985); 1998 Aug; 85(2):619-26. PubMed ID: 9688740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres.
    Place N; Bruton JD; Westerblad H
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):334-9. PubMed ID: 18671711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.