These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 27434184)

  • 1. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.
    Bučinský L; Jayatilaka D; Grabowsky S
    J Phys Chem A; 2016 Aug; 120(33):6650-69. PubMed ID: 27434184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic quantum crystallography of diphenyl- and dicyanomercury. Theoretical structure factors and Hirshfeld atom refinement.
    Bučinský L; Jayatilaka D; Grabowsky S
    Acta Crystallogr A Found Adv; 2019 Sep; 75(Pt 5):705-717. PubMed ID: 31475915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picture change error correction of radon atom electron density.
    Bučinský L; Biskupič S; Jayatilaka D
    J Chem Phys; 2010 Nov; 133(17):174125. PubMed ID: 21054024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-Orbit Coupling Constants in Atoms and Ions of Transition Elements: Comparison of Effective Core Potentials, Model Core Potentials, and All-Electron Methods.
    Koseki S; Matsunaga N; Asada T; Schmidt MW; Gordon MS
    J Phys Chem A; 2019 Mar; 123(12):2325-2339. PubMed ID: 30817150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic Hirshfeld atom refinement of an organo-gold(I) compound.
    Pawlędzio S; Malinska M; Woińska M; Wojciechowski J; Andrade Malaspina L; Kleemiss F; Grabowsky S; Woźniak K
    IUCrJ; 2021 Jul; 8(Pt 4):608-620. PubMed ID: 34258009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-orbit and electron correlation effects on the structure of EF3 (E = I, At, and element 117).
    Kim H; Choi YJ; Lee YS
    J Phys Chem B; 2008 Dec; 112(50):16021-9. PubMed ID: 19367904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HgH
    Podhorský M; Bučinský L; Jayatilaka D; Grabowsky S
    Acta Crystallogr A Found Adv; 2021 Jan; 77(Pt 1):54-66. PubMed ID: 33399131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-component relativistic methods for the heaviest elements.
    Kedziera D; Barysz M
    J Chem Phys; 2004 Oct; 121(14):6719-27. PubMed ID: 15473727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic Effects on the Topology of the Electron Density.
    Eickerling G; Mastalerz R; Herz V; Scherer W; Himmel HJ; Reiher M
    J Chem Theory Comput; 2007 Nov; 3(6):2182-97. PubMed ID: 26636211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):214-21. PubMed ID: 24549877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory.
    Arbuznikov AV; Vaara J; Kaupp M
    J Chem Phys; 2004 Feb; 120(5):2127-39. PubMed ID: 15268351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-orbit effects in the photoabsorption of WAu12 and MoAu12: a relativistic time dependent density functional study.
    Stener M; Nardelli A; Fronzoni G
    J Chem Phys; 2008 Apr; 128(13):134307. PubMed ID: 18397064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-order electron-correlation methods with scalar relativistic and spin-orbit corrections.
    Hirata S; Yanai T; Harrison RJ; Kamiya M; Fan PD
    J Chem Phys; 2007 Jan; 126(2):024104. PubMed ID: 17228940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.
    Verma P; Derricotte WD; Evangelista FA
    J Chem Theory Comput; 2016 Jan; 12(1):144-56. PubMed ID: 26584082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of zero-field splitting parameters: comparison of a two-component noncolinear spin-density-functional method and a one-component perturbational approach.
    Reviakine R; Arbuznikov AV; Tremblay JC; Remenyi C; Malkina OL; Malkin VG; Kaupp M
    J Chem Phys; 2006 Aug; 125(5):054110. PubMed ID: 16942206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
    Gourlaouen C; Piquemal JP; Saue T; Parisel O
    J Comput Chem; 2006 Jan; 27(2):142-56. PubMed ID: 16312018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin densities in two-component relativistic density functional calculations: noncollinear versus collinear approach.
    Van Wüllen C
    J Comput Chem; 2002 Jun; 23(8):779-85. PubMed ID: 12012354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling electron density distributions from X-ray diffraction to derive optical properties: constrained wavefunction versus multipole refinement.
    Hickstein DD; Cole JM; Turner MJ; Jayatilaka D
    J Chem Phys; 2013 Aug; 139(6):064108. PubMed ID: 23947844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variational versus Perturbational Treatment of Spin-Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange.
    Verma P; Autschbach J
    J Chem Theory Comput; 2013 Feb; 9(2):1052-67. PubMed ID: 26588748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.