BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27434250)

  • 21. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device.
    Barbosa AI; Gehlot P; Sidapra K; Edwards AD; Reis NM
    Biosens Bioelectron; 2015 Aug; 70():5-14. PubMed ID: 25775968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a Smartphone-based reading system for lateral flow immunoassay.
    Lee S; Kim G; Moon J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8453-7. PubMed ID: 25958545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent trends in smartphone-based detection for biomedical applications: a review.
    Banik S; Melanthota SK; Arbaaz ; Vaz JM; Kadambalithaya VM; Hussain I; Dutta S; Mazumder N
    Anal Bioanal Chem; 2021 Apr; 413(9):2389-2406. PubMed ID: 33586007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection.
    Machado JMD; Soares RRG; Chu V; Conde JP
    Biosens Bioelectron; 2018 Jan; 99():40-46. PubMed ID: 28735045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection.
    Zangheri M; Cevenini L; Anfossi L; Baggiani C; Simoni P; Di Nardo F; Roda A
    Biosens Bioelectron; 2015 Feb; 64():63-8. PubMed ID: 25194797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid crystal based sensing device using a smartphone.
    Nandi R; Pal SK
    Analyst; 2018 Feb; 143(5):1046-1052. PubMed ID: 29431767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.
    Park YM; Han YD; Chun HJ; Yoon HC
    Biosens Bioelectron; 2017 Jul; 93():205-211. PubMed ID: 27614684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique.
    Dutta S; Saikia GP; Sarma DJ; Gupta K; Das P; Nath P
    J Biophotonics; 2017 May; 10(5):623-633. PubMed ID: 27243385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses.
    Bergua JF; Álvarez-Diduk R; Idili A; Parolo C; Maymó M; Hu L; Merkoçi A
    Anal Chem; 2022 Jan; 94(2):1271-1285. PubMed ID: 34979088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of smartphone-based spectroscopy to biosample analysis: A review.
    Chen W; Yao Y; Chen T; Shen W; Tang S; Lee HK
    Biosens Bioelectron; 2021 Jan; 172():112788. PubMed ID: 33157407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3-D microarray and its microfabrication-free fluidic immunoassay device.
    Liu Y; Zhang Y; Lu Z; Li CM
    Anal Chim Acta; 2015 Aug; 889():187-93. PubMed ID: 26343442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.
    Hu J; Cui X; Gong Y; Xu X; Gao B; Wen T; Lu TJ; Xu F
    Biotechnol Adv; 2016; 34(3):305-20. PubMed ID: 26898179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A smartphone readable colorimetric sensing platform for rapid multiple protein detection.
    Wang F; Lu Y; Yang J; Chen Y; Jing W; He L; Liu Y
    Analyst; 2017 Aug; 142(17):3177-3182. PubMed ID: 28745762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold Nanourchins Improve Virus Targeting and Plasmonic Coupling for Virus Diagnosis on a Smartphone Platform.
    Liu Y; Ye H; Bayram A; Zhang T; Cai Q; Xie C; Huynh H; Peerzade SAMA; Kahn JS; Qin Z
    ACS Sens; 2022 Dec; 7(12):3741-3752. PubMed ID: 36454708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smartphone-based portable wireless optical system for the detection of target analytes.
    Gautam S; Batule BS; Kim HY; Park KS; Park HG
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27906513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic chips for immunoassays.
    Han KN; Li CA; Seong GH
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():119-41. PubMed ID: 23495732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.
    Romolo FS; Ferri E; Mirasoli M; D'Elia M; Ripani L; Peluso G; Risoluti R; Maiolini E; Girotti S
    Forensic Sci Int; 2015 Jan; 246():25-30. PubMed ID: 25460104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-channel smartphone-based spectroscopic system for high-throughput biosensing in low-resource settings.
    Hussain I; Locke A; Kight E; Malone JD; Haselton F; Bowden AK
    Analyst; 2022 Jun; 147(13):3007-3016. PubMed ID: 35638873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus.
    Reichmuth DS; Wang SK; Barrett LM; Throckmorton DJ; Einfeld W; Singh AK
    Lab Chip; 2008 Aug; 8(8):1319-24. PubMed ID: 18651074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.