BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 27434640)

  • 21. Toxic response of nickel nanoparticles in human lung epithelial A549 cells.
    Ahamed M
    Toxicol In Vitro; 2011 Jun; 25(4):930-6. PubMed ID: 21376802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.
    Jeong J; Kim J; Seok SH; Cho WS
    Arch Toxicol; 2016 Apr; 90(4):817-28. PubMed ID: 25731971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.
    Gong N; Shao K; Feng W; Lin Z; Liang C; Sun Y
    Chemosphere; 2011 Apr; 83(4):510-6. PubMed ID: 21216429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae).
    Kheirallah DAM; El-Samad LM; Abdel-Moneim AM
    Sci Total Environ; 2021 Jan; 753():141743. PubMed ID: 32891989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions.
    Hedberg YS; Herting G; Latvala S; Elihn K; Karlsson HL; Odnevall Wallinder I
    Regul Toxicol Pharmacol; 2016 Nov; 81():162-170. PubMed ID: 27575685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity.
    Magaye R; Zhao J
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):644-50. PubMed ID: 23000472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
    Karlsson HL; Cronholm P; Gustafsson J; Möller L
    Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways.
    Gu Y; Wang Y; Zhou Q; Bowman L; Mao G; Zou B; Xu J; Liu Y; Liu K; Zhao J; Ding M
    PLoS One; 2016; 11(3):e0150954. PubMed ID: 26943640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of Horseradish Peroxidase on Metallic Nanoparticles: Effects on Reactive Oxygen Species Detection Using 2',7'-Dichlorofluorescin Diacetate.
    Kessler A; Hedberg J; McCarrick S; Karlsson HL; Blomberg E; Odnevall I
    Chem Res Toxicol; 2021 Jun; 34(6):1481-1495. PubMed ID: 33856197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact.
    Mazinanian N; Hedberg Y; Odnevall Wallinder I
    Regul Toxicol Pharmacol; 2013 Feb; 65(1):135-46. PubMed ID: 23142754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nickel oxide (NiO) nanoparticles disturb physiology and induce cell death in the yeast Saccharomyces cerevisiae.
    Sousa CA; Soares HMVM; Soares EV
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2827-2838. PubMed ID: 29423633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids.
    Chakrabarti SK; Bai C; Subramanian KS
    Toxicol Appl Pharmacol; 2001 Feb; 170(3):153-65. PubMed ID: 11162780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells.
    Abudayyak M; Guzel E; Özhan G
    Neurochem Int; 2017 Sep; 108():7-14. PubMed ID: 28159626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nickel Oxide (NiO) Nanoparticles Induce Loss of Cell Viability in Yeast Mediated by Oxidative Stress.
    Sousa CA; Soares HMVM; Soares EV
    Chem Res Toxicol; 2018 Aug; 31(8):658-665. PubMed ID: 30043610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments - An indication for the catalytic nature of their interactions.
    Neubauer N; Palomaeki J; Karisola P; Alenius H; Kasper G
    Nanotoxicology; 2015; 9(8):1059-66. PubMed ID: 25791496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models.
    Vallabani NVS; Alijagic A; Persson A; Odnevall I; Särndahl E; Karlsson HL
    Toxicology; 2022 Feb; 467():153100. PubMed ID: 35032623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells.
    Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M
    Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells.
    Ada K; Turk M; Oguztuzun S; Kilic M; Demirel M; Tandogan N; Ersayar E; Latif O
    Folia Histochem Cytobiol; 2010 Dec; 48(4):524-9. PubMed ID: 21478093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells.
    Capasso L; Camatini M; Gualtieri M
    Toxicol Lett; 2014 Apr; 226(1):28-34. PubMed ID: 24503009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.