These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 27434674)

  • 1. Ribosome•RelA structures reveal the mechanism of stringent response activation.
    Loveland AB; Bah E; Madireddy R; Zhang Y; Brilot AF; Grigorieff N; Korostelev AA
    Elife; 2016 Jul; 5():. PubMed ID: 27434674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosome-dependent activation of stringent control.
    Brown A; Fernández IS; Gordiyenko Y; Ramakrishnan V
    Nature; 2016 Jun; 534(7606):277-280. PubMed ID: 27279228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction studies on bacterial stringent response protein RelA with uncharged tRNA provide evidence for its prerequisite complex for ribosome binding.
    Kushwaha GS; Bange G; Bhavesh NS
    Curr Genet; 2019 Oct; 65(5):1173-1184. PubMed ID: 30968189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the Stringent Response by Loading of RelA-tRNA Complexes at the Ribosomal A-Site.
    Winther KS; Roghanian M; Gerdes K
    Mol Cell; 2018 Apr; 70(1):95-105.e4. PubMed ID: 29625042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM; Blaha G; Wilson DN; Marahiel MA; Nierhaus KH
    Mol Cell; 2002 Oct; 10(4):779-88. PubMed ID: 12419222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis.
    Arenz S; Abdelshahid M; Sohmen D; Payoe R; Starosta AL; Berninghausen O; Hauryliuk V; Beckmann R; Wilson DN
    Nucleic Acids Res; 2016 Jul; 44(13):6471-81. PubMed ID: 27226493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ribosome triggers the stringent response by RelA via a highly distorted tRNA.
    Agirrezabala X; Fernández IS; Kelley AC; Cartón DG; Ramakrishnan V; Valle M
    EMBO Rep; 2013 Sep; 14(9):811-6. PubMed ID: 23877429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of RelA-mediated (p)ppGpp formation on tRNA identity.
    Payoe R; Fahlman RP
    Biochemistry; 2011 Apr; 50(15):3075-83. PubMed ID: 21410133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribosomal A-site finger is crucial for binding and activation of the stringent factor RelA.
    Kudrin P; Dzhygyr I; Ishiguro K; Beljantseva J; Maksimova E; Oliveira SRA; Varik V; Payoe R; Konevega AL; Tenson T; Suzuki T; Hauryliuk V
    Nucleic Acids Res; 2018 Feb; 46(4):1973-1983. PubMed ID: 29390134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome association primes the stringent factor Rel for tRNA-dependent locking in the A-site and activation of (p)ppGpp synthesis.
    Takada H; Roghanian M; Caballero-Montes J; Van Nerom K; Jimmy S; Kudrin P; Trebini F; Murayama R; Akanuma G; Garcia-Pino A; Hauryliuk V
    Nucleic Acids Res; 2021 Jan; 49(1):444-457. PubMed ID: 33330919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome.
    Wang YH; Dai H; Zhang L; Wu Y; Wang J; Wang C; Xu CH; Hou H; Yang B; Zhu Y; Zhang X; Zhou J
    Nucleic Acids Res; 2023 Sep; 51(17):8909-8924. PubMed ID: 37604686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli.
    Li W; Bouveret E; Zhang Y; Liu K; Wang JD; Weisshaar JC
    Mol Microbiol; 2016 Feb; 99(3):571-85. PubMed ID: 26480956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the bacterial ribosome at 2 Å resolution.
    Watson ZL; Ward FR; Méheust R; Ad O; Schepartz A; Banfield JF; Cate JH
    Elife; 2020 Sep; 9():. PubMed ID: 32924932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into cognate versus near-cognate discrimination during decoding.
    Agirrezabala X; Schreiner E; Trabuco LG; Lei J; Ortiz-Meoz RF; Schulten K; Green R; Frank J
    EMBO J; 2011 Apr; 30(8):1497-507. PubMed ID: 21378755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process.
    Valle M; Sengupta J; Swami NK; Grassucci RA; Burkhardt N; Nierhaus KH; Agrawal RK; Frank J
    EMBO J; 2002 Jul; 21(13):3557-67. PubMed ID: 12093756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli.
    Pon CL; Gualerzi C
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4950-4. PubMed ID: 4612534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the decoding region on the 30S Escherichia coli ribosomal subunit by affinity immunoelectron microscopy.
    Keren-Zur M; Boublik M; Ofengand J
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1054-8. PubMed ID: 375223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy.
    Valle M; Zavialov A; Li W; Stagg SM; Sengupta J; Nielsen RC; Nissen P; Harvey SC; Ehrenberg M; Frank J
    Nat Struct Biol; 2003 Nov; 10(11):899-906. PubMed ID: 14566331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cryo-EM structure of a translation initiation complex from Escherichia coli.
    Allen GS; Zavialov A; Gursky R; Ehrenberg M; Frank J
    Cell; 2005 Jun; 121(5):703-12. PubMed ID: 15935757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.