These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27434699)
1. Inactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation. Fracarolli L; Rodrigues GB; Pereira AC; Massola Júnior NS; Silva-Junior GJ; Bachmann L; Wainwright M; Bastos JK; Braga GUL J Photochem Photobiol B; 2016 Sep; 162():402-411. PubMed ID: 27434699 [TBL] [Abstract][Full Text] [Related]
2. Furocoumarins and coumarins photoinactivate Colletotrichum acutatum and Aspergillus nidulans fungi under solar radiation. de Menezes HD; Pereira AC; Brancini GT; de Leão HC; Massola Júnior NS; Bachmann L; Wainwright M; Bastos JK; Braga GU J Photochem Photobiol B; 2014 Feb; 131():74-83. PubMed ID: 24509069 [TBL] [Abstract][Full Text] [Related]
3. Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation. Gonzales JC; Brancini GTP; Rodrigues GB; Silva-Junior GJ; Bachmann L; Wainwright M; Braga GÚL J Photochem Photobiol B; 2017 Nov; 176():54-61. PubMed ID: 28941778 [TBL] [Abstract][Full Text] [Related]
4. In vitro photodynamic inactivation of plant-pathogenic fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium photosensitizers. de Menezes HD; Rodrigues GB; Teixeira Sde P; Massola NS; Bachmann L; Wainwright M; Braga GU Appl Environ Microbiol; 2014 Mar; 80(5):1623-32. PubMed ID: 24362436 [TBL] [Abstract][Full Text] [Related]
5. Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant pathogenic fungus Colletotrichum acutatum. de Menezes HD; Massola NS; Flint SD; Silva GJ; Bachmann L; Rangel DE; Braga GU Photochem Photobiol; 2015; 91(2):397-402. PubMed ID: 25535947 [TBL] [Abstract][Full Text] [Related]
6. In vitro photodynamic inactivation of conidia of the phytopathogenic fungus Colletotrichum graminicola with cationic porphyrins. Vandresen CC; Gonçalves AG; Ducatti DR; Murakami FS; Noseda MD; Duarte ME; Barreira SM Photochem Photobiol Sci; 2016 May; 15(5):673-81. PubMed ID: 27109559 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous determination of urinary metabolites of methoxypsoralens in human and Umbelliferae medicines by high-performance liquid chromatography. Wang LH; Jiang SY J Chromatogr Sci; 2006 Sep; 44(8):473-8. PubMed ID: 16959122 [TBL] [Abstract][Full Text] [Related]
8. Coumarins from the peel of citrus grown in Colombia: composition, elicitation and antifungal activity. Ramírez-Pelayo C; Martínez-Quiñones J; Gil J; Durango D Heliyon; 2019 Jun; 5(6):e01937. PubMed ID: 31245648 [TBL] [Abstract][Full Text] [Related]
9. Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Peres NA; Mackenzie SJ; Peever TL; Timmer LW Phytopathology; 2008 Mar; 98(3):345-52. PubMed ID: 18944086 [TBL] [Abstract][Full Text] [Related]
10. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. Chung KR; Shilts T; Li W; Timmer LW FEMS Microbiol Lett; 2002 Jul; 213(1):33-9. PubMed ID: 12127485 [TBL] [Abstract][Full Text] [Related]
12. Relative photomutagenicity of furocoumarins and limettin in the hypoxanthine phosphoribosyl transferase assay in V79 cells. Raquet N; Schrenk D Chem Res Toxicol; 2009 Sep; 22(9):1639-47. PubMed ID: 19725558 [TBL] [Abstract][Full Text] [Related]
13. Ultrastructural changes in the epidermis of petals of the sweet orange infected by Colletotrichum acutatum. Marques JP; Amorim L; Spósito MB; Appezzato-da-Glória B Protoplasma; 2016 Sep; 253(5):1233-42. PubMed ID: 26334287 [TBL] [Abstract][Full Text] [Related]
14. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Landum MC; Félix Mdo R; Alho J; Garcia R; Cabrita MJ; Rei F; Varanda CM Microbiol Res; 2016 Feb; 183():100-8. PubMed ID: 26805623 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Lopes MR; Klein MN; Ferraz LP; da Silva AC; Kupper KC Microbiol Res; 2015 Jun; 175():93-9. PubMed ID: 25960430 [TBL] [Abstract][Full Text] [Related]
16. The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. You BJ; Choquer M; Chung KR Mol Plant Microbe Interact; 2007 Sep; 20(9):1149-60. PubMed ID: 17849717 [TBL] [Abstract][Full Text] [Related]
17. Coumarins, psoralens, and quantitative Jungen M; Lotz P; Patz CD; Steingass CB; Schweiggert R Food Chem; 2021 Oct; 359():129804. PubMed ID: 34015560 [TBL] [Abstract][Full Text] [Related]
18. Identification of psoralen, 8-methoxypsoralen, isopimpinellin, and 5,7-dimethoxycoumarin in Pelea anisata H. Mann. Yoke Marchant Y; Turjman M; Flynn T; Balza F; Mitchell JC; Towers GH Contact Dermatitis; 1985 Apr; 12(4):196-9. PubMed ID: 4017567 [TBL] [Abstract][Full Text] [Related]