BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27434777)

  • 1. Modulating the Nucleated Self-Assembly of Tri-β(3) -Peptides Using Cucurbit[n]urils.
    Satav T; Korevaar P; de Greef TF; Huskens J; Jonkheijm P
    Chemistry; 2016 Aug; 22(36):12675-9. PubMed ID: 27434777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Cooperativity in Ternary Peptide-Cucurbit[8]uril Complexes.
    Cavatorta E; Jonkheijm P; Huskens J
    Chemistry; 2017 Mar; 23(17):4046-4050. PubMed ID: 28195371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation.
    Jones ST; Zayed JM; Scherman OA
    Nanoscale; 2013 Jun; 5(12):5299-302. PubMed ID: 23685700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligopeptide-CB[8] complexation with switchable binding pathways.
    Wu G; Clarke DE; Wu C; Scherman OA
    Org Biomol Chem; 2019 Apr; 17(14):3514-3520. PubMed ID: 30892363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad-Spectrum Extracellular Antiviral Properties of Cucurbit[
    Jones LM; Super EH; Batt LJ; Gasbarri M; Coppola F; Bhebhe LM; Cheesman BT; Howe AM; Král P; Coulston R; Jones ST
    ACS Infect Dis; 2022 Oct; 8(10):2084-2095. PubMed ID: 36062478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Healable Supramolecular Hydrogel Formed by Nor-Seco-Cucurbit[10]uril as a Supramolecular Crosslinker.
    Park KM; Roh JH; Sung G; Murray J; Kim K
    Chem Asian J; 2017 Jul; 12(13):1461-1464. PubMed ID: 28337859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly of Supramolecular DNA Amphiphiles through Host-Guest Interaction and Their Stimuli-Responsiveness.
    Yuan W; Ma J; Zhao Z; Liu S
    Macromol Rapid Commun; 2020 May; 41(9):e2000022. PubMed ID: 32196823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Supramolecular Self-Assembly: Fabrication and Visualization of Multiblock Microstructures.
    Shi X; Zhang J; Liu J; Zhao X; Wang H; Wei P; Zhang X; Ni XL; Sung HH; Williams ID; Ng WK; Wong KS; Lam JWY; Wang L; Jin H; Tang BZ
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202211298. PubMed ID: 36207766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of linear supramolecular polymers that is based on host-guest assembly in water.
    Xu Y; Guo M; Li X; Malkovskiy A; Wesdemiotis C; Pang Y
    Chem Commun (Camb); 2011 Aug; 47(31):8883-5. PubMed ID: 21674075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of pyrylium guests in cucurbituril hosts.
    Thangavel A; Sotiriou-Leventis C; Dawes R; Leventis N
    J Org Chem; 2012 Mar; 77(5):2263-71. PubMed ID: 22339810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cucurbit[n]uril family: prime components for self-sorting systems.
    Liu S; Ruspic C; Mukhopadhyay P; Chakrabarti S; Zavalij PY; Isaacs L
    J Am Chem Soc; 2005 Nov; 127(45):15959-67. PubMed ID: 16277540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Affinity Recognition of a Selected Amino Acid Epitope within a Protein by Cucurbit[8]uril Complexation.
    Sonzini S; Marcozzi A; Gubeli RJ; van der Walle CF; Ravn P; Herrmann A; Scherman OA
    Angew Chem Int Ed Engl; 2016 Nov; 55(45):14000-14004. PubMed ID: 27735110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution.
    Biedermann F; Rauwald U; Cziferszky M; Williams KA; Gann LD; Guo BY; Urbach AR; Bielawski CW; Scherman OA
    Chemistry; 2010 Dec; 16(46):13716-22. PubMed ID: 21058380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Polypeptide-Microtubule Aggregation with Cucurbit[8]uril for Enhanced Cell Apoptosis.
    Zhang YM; Liu JH; Yu Q; Wen X; Liu Y
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10553-10557. PubMed ID: 31165539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions.
    Wu H; Chen H; Tang B; Kang Y; Xu JF; Zhang X
    Langmuir; 2020 Feb; 36(5):1235-1240. PubMed ID: 31941282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular polymeric peptide amphiphile vesicles for the encapsulation of basic fibroblast growth factor.
    Loh XJ; del Barrio J; Lee TC; Scherman OA
    Chem Commun (Camb); 2014 Mar; 50(23):3033-5. PubMed ID: 24509517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cucurbit[8]uril-based supramolecular theranostics.
    Wu D; Wang J; Du X; Cao Y; Ping K; Liu D
    J Nanobiotechnology; 2024 May; 22(1):235. PubMed ID: 38725031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular inhibition of amyloid fibrillation by cucurbit[7]uril.
    Lee HH; Choi TS; Lee SJ; Lee JW; Park J; Ko YH; Kim WJ; Kim K; Kim HI
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7461-5. PubMed ID: 24841324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular dimerisation of middle-chain Phe pentapeptides via CB[8] host-guest homoternary complex formation.
    Sonzini S; Ryan ST; Scherman OA
    Chem Commun (Camb); 2013 Oct; 49(78):8779-81. PubMed ID: 23963082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions.
    Sankaran S; Kiren MC; Jonkheijm P
    ACS Nano; 2015; 9(4):3579-86. PubMed ID: 25738514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.