These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27434832)

  • 81. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.
    Jang HA; Seo ES; Seong MY; Lee BL
    Dev Comp Immunol; 2017 Feb; 67():97-106. PubMed ID: 27825951
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Purification of LPS from Leptospira.
    Bonhomme D; Werts C
    Methods Mol Biol; 2020; 2134():53-65. PubMed ID: 32632859
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Lipopolysaccharide as a target for the development of novel therapeutics in gram-negative bacteria.
    Yethon JA; Whitfield C
    Curr Drug Targets Infect Disord; 2001 Aug; 1(2):91-106. PubMed ID: 12455407
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural determination of the O-chain polysaccharide from Agrobacterium tumefaciens, strain DSM 30205.
    De Castro C; De Castro O; Molinaro A; Parrilli M
    Eur J Biochem; 2002 Jun; 269(12):2885-8. PubMed ID: 12071951
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Biopolymer Skeleton Produced by Rhizobium radiobacter: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O-Antigen.
    Speciale I; Di Lorenzo F; Gargiulo V; Erbs G; Newman MA; Molinaro A; De Castro C
    Angew Chem Int Ed Engl; 2020 Apr; 59(16):6368-6374. PubMed ID: 32073204
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS.
    Lorenzo FD; Palmigiano A; Paciello I; Pallach M; Garozzo D; Bernardini ML; Cono V; Yakimov MM; Molinaro A; Silipo A
    Mar Drugs; 2017 Jun; 15(7):. PubMed ID: 28653982
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structural studies on the O-specific polysaccharide of the lipopolysaccharide from Pseudomonas donghuensis strain SVBP6, with antifungal activity against the phytopathogenic fungus Macrophomina phaseolina.
    Zdorovenko EL; Dmitrenok AS; Masi M; Castaldi S; Muzio FM; Isticato R; Valverde C; Knirel YA; Evidente A
    Int J Biol Macromol; 2021 Jul; 182():2019-2023. PubMed ID: 34081955
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Isolation and characterization of lipopolysaccharides.
    Apicella MA
    Methods Mol Biol; 2008; 431():3-13. PubMed ID: 18287743
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity.
    Casillo A; Parrilli E; Tutino ML; Corsaro MM
    FEMS Microbiol Ecol; 2019 Jul; 95(7):. PubMed ID: 31210256
    [TBL] [Abstract][Full Text] [Related]  

  • 90. 5,7-Diamino-5,7,9-trideoxynon-2-ulosonic acid: a novel sugar from a phytopathogenic Pseudomonas lipopolysaccharide.
    Corsaro MM; Evidente A; Lanzetta R; Lavermicocca P; Parrilli M; Ummarino S
    Carbohydr Res; 2002 May; 337(10):955-9. PubMed ID: 12007479
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Export of O-specific lipopolysaccharide.
    Valvano MA
    Front Biosci; 2003 May; 8():s452-71. PubMed ID: 12700099
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Structure and Conformation of Wild-Type Bacterial Lipopolysaccharide Layers at Air-Water Interfaces.
    Micciulla S; Gerelli Y; Schneck E
    Biophys J; 2019 Apr; 116(7):1259-1269. PubMed ID: 30878200
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The structural diversity of carbohydrate antigens of selected gram-negative marine bacteria.
    Nazarenko EL; Crawford RJ; Ivanova EP
    Mar Drugs; 2011; 9(10):1914-1954. PubMed ID: 22073003
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bacteria Are Omnipresent on Phanerochaete chrysosporium Burdsall.
    Seigle-Murandi F; Guiraud P; Croize J; Falsen E; Eriksson KL
    Appl Environ Microbiol; 1996 Jul; 62(7):2477-81. PubMed ID: 16535357
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Bioactive and structural metabolites of pseudomonas and burkholderia species causal agents of cultivated mushrooms diseases.
    Andolfi A; Cimmino A; Cantore PL; Iacobellis NS; Evidente A
    Perspect Medicin Chem; 2008 May; 2():81-112. PubMed ID: 19787100
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Characterization of Bacterial and Fungal Assemblages From Historically Contaminated Metalliferous Soils Using Metagenomics Coupled With Diffusion Chambers and Microbial Traps.
    Pathak A; Jaswal R; Xu X; White JR; Edwards B; Hunt J; Brooks S; Rathore RS; Agarwal M; Chauhan A
    Front Microbiol; 2020; 11():1024. PubMed ID: 32655505
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant
    Liu XX; Hu X; Cao Y; Pang WJ; Huang JY; Guo P; Huang L
    Front Microbiol; 2019; 10():408. PubMed ID: 30930861
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Structural investigation of the lipopolysaccharide O-chain isolated from Burkholderia fungorum strain DSM 17061.
    De Felice A; Di Lorenzo F; Scherlach K; Ross C; Silipo A; Hertweck C; Molinaro A
    Carbohydr Res; 2016 Oct; 433():31-5. PubMed ID: 27434832
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Nitrogen-fixing bacterium Burkholderia brasiliensis produces a novel yersiniose A-containing O-polysaccharide.
    Mattos KA; Todeschini AR; Heise N; Jones C; Previato JO; Mendonça-Previato L
    Glycobiology; 2005 Mar; 15(3):313-21. PubMed ID: 15509723
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.