BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27435029)

  • 1. Effect of progressive normobaric hypoxia on dynamic cerebral autoregulation.
    Horiuchi M; Endo J; Dobashi S; Kiuchi M; Koyama K; Subudhi AW
    Exp Physiol; 2016 Oct; 101(10):1276-1284. PubMed ID: 27435029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia.
    Barclay H; Mukerji S; Kayser B; O'Donnell T; Tzeng YC; Hill S; Knapp K; Legg S; Frei D; Fan JL
    Exp Physiol; 2021 Jan; 106(1):175-190. PubMed ID: 33347666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral autoregulation index at high altitude assessed by thigh-cuff and transfer function analysis techniques.
    Subudhi AW; Grajzel K; Langolf RJ; Roach RC; Panerai RB; Davis JE
    Exp Physiol; 2015 Feb; 100(2):173-81. PubMed ID: 25480158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.
    Subudhi AW; Fan JL; Evero O; Bourdillon N; Kayser B; Julian CG; Lovering AT; Panerai RB; Roach RC
    J Appl Physiol (1985); 2014 Apr; 116(7):724-9. PubMed ID: 24371013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated respiratory chemoreflex-mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness.
    Ogoh S; Washio T; Stacey BS; Tsukamoto H; Iannetelli A; Owens TS; Calverley TA; Fall L; Marley CJ; Saito S; Watanabe H; Hashimoto T; Ando S; Miyamoto T; Bailey DM
    Exp Physiol; 2021 Sep; 106(9):1922-1938. PubMed ID: 34318560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UBC-Nepal expedition: dynamic cerebral autoregulation is attenuated in lowlanders upon ascent to 5050 m.
    Tymko MM; Hansen AB; Tremblay JC; Patrician A; Hoiland RL; Howe CA; Rieger MG; Ainslie PN
    Eur J Appl Physiol; 2020 Mar; 120(3):675-686. PubMed ID: 32034478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function.
    Bailey DM; Evans KA; James PE; McEneny J; Young IS; Fall L; Gutowski M; Kewley E; McCord JM; Møller K; Ainslie PN
    J Physiol; 2009 Jan; 587(1):73-85. PubMed ID: 18936082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness.
    Manferdelli G; Marzorati M; Easton C; Porcelli S
    Exp Physiol; 2021 Jan; 106(1):76-85. PubMed ID: 32715540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency.
    Iwasaki K; Ogawa Y; Shibata S; Aoki K
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):776-84. PubMed ID: 16926845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia.
    Schommer K; Hammer M; Hotz L; Menold E; Bärtsch P; Berger MM
    J Appl Physiol (1985); 2012 Oct; 113(7):1068-74. PubMed ID: 22858630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia.
    Ainslie PN; Ogoh S; Burgess K; Celi L; McGrattan K; Peebles K; Murrell C; Subedi P; Burgess KR
    J Appl Physiol (1985); 2008 Feb; 104(2):490-8. PubMed ID: 18048592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.
    Nishimura N; Iwasaki K; Ogawa Y; Aoki K
    J Appl Physiol (1985); 2010 May; 108(5):1154-61. PubMed ID: 20224002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired dynamic cerebral autoregulation at extreme high altitude even after acclimatization.
    Iwasaki K; Zhang R; Zuckerman JH; Ogawa Y; Hansen LH; Levine BD
    J Cereb Blood Flow Metab; 2011 Jan; 31(1):283-92. PubMed ID: 20571521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension.
    Lawley JS; Alperin N; Bagci AM; Lee SH; Mullins PG; Oliver SJ; Macdonald JH
    Ann Neurol; 2014 Jun; 75(6):890-8. PubMed ID: 24788400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypobaric hypoxia on cerebral autoregulation.
    Subudhi AW; Panerai RB; Roach RC
    Stroke; 2010 Apr; 41(4):641-6. PubMed ID: 20185774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.
    Van Thienen R; Hespel P
    J Appl Physiol (1985); 2016 Feb; 120(3):351-61. PubMed ID: 26607244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Acute mild hypoxia impairment of dynamic cerebral autoregulation assessed by spectral analysis and thigh-cuff deflation].
    Katsukawa H; Ogawa Y; Aoki K; Yanagida R; Iwasaki K
    Nihon Eiseigaku Zasshi; 2012; 67(4):508-13. PubMed ID: 23095363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic cerebral autoregulation is unrelated to decrease in external carotid artery blood flow during acute hypotension in healthy young men.
    Ogoh S; Sørensen H; Hirasawa A; Sasaki H; Washio T; Hashimoto T; Bailey DM; Secher NH
    Exp Physiol; 2016 Aug; 101(8):1040-9. PubMed ID: 27228963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acute hypoxia on cerebrovascular responses to carbon dioxide.
    Ogoh S; Nakahara H; Ueda S; Okazaki K; Shibasaki M; Subudhi AW; Miyamoto T
    Exp Physiol; 2014 Jun; 99(6):849-58. PubMed ID: 24632495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global REACH 2018: The carotid artery diameter response to the cold pressor test is governed by arterial blood pressure during normoxic but not hypoxic conditions in healthy lowlanders and Andean highlanders.
    Tymko MM; Hoiland RL; Vermeulen TD; Howe CA; Tymko C; Stone RM; Steinback CD; Steele AR; Villafuerte F; Vizcardo-Galindo G; Mujica RJF; Ainslie PN
    Exp Physiol; 2020 Oct; 105(10):1742-1757. PubMed ID: 32829509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.