These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27435537)

  • 1. A New Isolation and Evaluation Method for Marine-Derived Yeast spp. with Potential Applications in Industrial Biotechnology.
    Zaky AS; Greetham D; Louis EJ; Tucker GA; Du C
    J Microbiol Biotechnol; 2016 Nov; 26(11):1891-1907. PubMed ID: 27435537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The environmental and intrinsic yeast diversity of Cuban cocoa bean heap fermentations.
    Fernández Maura Y; Balzarini T; Clapé Borges P; Evrard P; De Vuyst L; Daniel HM
    Int J Food Microbiol; 2016 Sep; 233():34-43. PubMed ID: 27322722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine yeast isolation and industrial application.
    Zaky AS; Tucker GA; Daw ZY; Du C
    FEMS Yeast Res; 2014 Sep; 14(6):813-25. PubMed ID: 24738708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and Characterization of Yeasts from Rumen Fluids for Potential Use as Additives in Ruminant Feeding.
    Suntara C; Cherdthong A; Wanapat M; Uriyapongson S; Leelavatcharamas V; Sawaengkaew J; Chanjula P; Foiklang S
    Vet Sci; 2021 Mar; 8(3):. PubMed ID: 33808746
    [No Abstract]   [Full Text] [Related]  

  • 6. The isolation of pentose-assimilating yeasts and their xylose fermentation potential.
    Martins GM; Bocchini-Martins DA; Bezzerra-Bussoli C; Pagnocca FC; Boscolo M; Monteiro DA; Silva RD; Gomes E
    Braz J Microbiol; 2018; 49(1):162-168. PubMed ID: 28888830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain.
    Zaky AS; Greetham D; Tucker GA; Du C
    Sci Rep; 2018 Aug; 8(1):12127. PubMed ID: 30108287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil.
    Morais CG; Cadete RM; Uetanabaro AP; Rosa LH; Lachance MA; Rosa CA
    Fungal Genet Biol; 2013 Nov; 60():19-28. PubMed ID: 23872280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications.
    Bautista-Gallego J; Rodríguez-Gómez F; Barrio E; Querol A; Garrido-Fernández A; Arroyo-López FN
    Int J Food Microbiol; 2011 May; 147(2):89-96. PubMed ID: 21497408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.
    Wang C; Liu Y
    Food Microbiol; 2013 Apr; 33(2):172-7. PubMed ID: 23200649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the potential of wild yeasts for bioethanol production.
    Ruyters S; Mukherjee V; Verstrepen KJ; Thevelein JM; Willems KA; Lievens B
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):39-48. PubMed ID: 25413210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artisanal cachaça and brewer's spent grain as sources of yeasts with promising biotechnological properties.
    Brexó RP; Andrietta MGS; Sant'Ana AS
    J Appl Microbiol; 2018 Aug; 125(2):409-421. PubMed ID: 29633441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks.
    Rao RS; Bhadra B; Shivaji S
    Lett Appl Microbiol; 2008 Jul; 47(1):19-24. PubMed ID: 18498317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of the Sicilian distillate "Spiritu re fascitrari" from honey by-products: An interesting source of yeast diversity.
    Gaglio R; Alfonzo A; Francesca N; Corona O; Di Gerlando R; Columba P; Moschetti G
    Int J Food Microbiol; 2017 Nov; 261():62-72. PubMed ID: 28992516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis.
    Ali SS; Wu J; Xie R; Zhou F; Sun J; Huang M
    PLoS One; 2017; 12(7):e0181141. PubMed ID: 28704553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.
    Mendoza LM; Neef A; Vignolo G; Belloch C
    Food Microbiol; 2017 Oct; 67():1-10. PubMed ID: 28648286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterisation of
    Turner W; Greetham D; Du C
    Front Bioeng Biotechnol; 2022; 10():1028185. PubMed ID: 36312543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.
    Mukherjee V; Radecka D; Aerts G; Verstrepen KJ; Lievens B; Thevelein JM
    Biotechnol Biofuels; 2017; 10():216. PubMed ID: 28924451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.