These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 2743557)
61. Amino acid labeling patterns in the efferent innervation of the cochlea: an electron microscopic autoradiographic study. Schwartz IR; Ryan AF J Comp Neurol; 1986 Apr; 246(4):500-12. PubMed ID: 3700725 [TBL] [Abstract][Full Text] [Related]
62. Efferent projections of the neonatal cat superior colliculus: facial and cerebellum-related brainstem structures. Stein BE; Spencer RF; Edwards SB J Comp Neurol; 1984 Nov; 230(1):47-54. PubMed ID: 6096413 [TBL] [Abstract][Full Text] [Related]
63. Development of the thalamocortical system: transient-crossed projections to the frontal cortex in neonatal rats. Minciacchi D; Granato A J Comp Neurol; 1989 Mar; 281(1):1-12. PubMed ID: 2925895 [TBL] [Abstract][Full Text] [Related]
64. Innervation of the adult rat cerebellar hemisphere by fibres from the ipsilateral inferior olive following unilateral neonatal pedunculotomy: an autoradiographic and retrograde fluorescent double-labelling study. Sherrard RM; Bower AJ; Payne JN Exp Brain Res; 1986; 62(2):411-21. PubMed ID: 3709723 [TBL] [Abstract][Full Text] [Related]
65. Olivocochlear neurons sending axon collaterals into the ventral cochlear nucleus of the rat. Horváth M; Kraus KS; Illing RB J Comp Neurol; 2000 Jun; 422(1):95-105. PubMed ID: 10842220 [TBL] [Abstract][Full Text] [Related]
66. Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. Giolli RA; Blanks RH; Torigoe Y J Comp Neurol; 1984 Aug; 227(2):228-51. PubMed ID: 6470215 [TBL] [Abstract][Full Text] [Related]
67. The final stage of cholinergic differentiation occurs below inner hair cells during development of the rodent cochlea. Bergeron AL; Schrader A; Yang D; Osman AA; Simmons DD J Assoc Res Otolaryngol; 2005 Dec; 6(4):401-15. PubMed ID: 16228856 [TBL] [Abstract][Full Text] [Related]
68. Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurons in the rat. Haque T; Yamamoto S; Masuda Y; Kato T; Sato F; Uchino K; Oka A; Nakamura M; Takeda R; Ono T; Kogo M; Yoshida A Brain Res; 2010 Jul; 1346():69-82. PubMed ID: 20493176 [TBL] [Abstract][Full Text] [Related]
69. Postnatal changes in cytochrome oxidase expressions in brain stem nuclei of rats: implications for sensitive periods. Liu Q; Wong-Riley MT J Appl Physiol (1985); 2003 Dec; 95(6):2285-91. PubMed ID: 12909612 [TBL] [Abstract][Full Text] [Related]
70. Noradrenergic and serotonergic projections to the superior olive: potential for modulation of olivocochlear neurons. Woods CI; Azeredo WJ Brain Res; 1999 Jul; 836(1-2):9-18. PubMed ID: 10415400 [TBL] [Abstract][Full Text] [Related]
71. Postnatal development of preproenkephalin mRNA containing neurons in the rat lower brainstem. Morita Y; Zhang JH; Hironaka T; Tateno E; Noguchi K; Sato M; Kiyama H; Tohyama M J Comp Neurol; 1990 Feb; 292(2):193-213. PubMed ID: 2319009 [TBL] [Abstract][Full Text] [Related]
72. Auditory projections to the inferior colliculus of the rat are present by birth. Friauf E; Kandler K Neurosci Lett; 1990 Nov; 120(1):58-61. PubMed ID: 1705672 [TBL] [Abstract][Full Text] [Related]
73. The location of brainstem neurons which project bilaterally to the spinal trigeminal nuclei as demonstrated by the double fluorescent retrograde tracer technique. Beitz AJ; Wells WE; Shepard RD Brain Res; 1983 Jan; 258(2):305-12. PubMed ID: 6186337 [TBL] [Abstract][Full Text] [Related]
74. Early myelination patterns in the brainstem auditory nuclei and pathway: MRI evaluation study. Sano M; Kaga K; Kuan CC; Ino K; Mima K Int J Pediatr Otorhinolaryngol; 2007 Jul; 71(7):1105-15. PubMed ID: 17485121 [TBL] [Abstract][Full Text] [Related]
75. Nitric oxide synthase in identified olivocochlear projection neurons in rat and guinea pig. Riemann R; Reuss S Hear Res; 1999 Sep; 135(1-2):181-9. PubMed ID: 10491966 [TBL] [Abstract][Full Text] [Related]
76. Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. Sanes DH; Merickel M; Rubel EW J Comp Neurol; 1989 Jan; 279(3):436-44. PubMed ID: 2918079 [TBL] [Abstract][Full Text] [Related]
77. Variations of cochlear microphonic potential after sectioning efferent fibers to the cochlea. Bonfils P; Remond MC; Pujol R Hear Res; 1987; 30(2-3):267-71. PubMed ID: 3680069 [TBL] [Abstract][Full Text] [Related]
78. An evaluation of retrograde tracing methods for the identification of chemically distinct cochlear efferent neurons. Vetter DE; Mugnaini E Arch Ital Biol; 1990 Jul; 128(2-4):331-53. PubMed ID: 1702612 [TBL] [Abstract][Full Text] [Related]