BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 27435592)

  • 1. Identification of potential crucial gene network related to seasonal allergic rhinitis using microarray data.
    Shi J; Zhang Y; Qi S; Liu G; Dong X; Huang N; Li W; Chen H; Zhu B
    Eur Arch Otorhinolaryngol; 2017 Jan; 274(1):231-237. PubMed ID: 27435592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics-Based Approaches Predict That MIR-17-5P Functions in the Pathogenesis of Seasonal Allergic Rhinitis Through Regulating ABCA1 and CD69.
    Liu X; Ren Y; Sun X; Huang H; Liu X
    Am J Rhinol Allergy; 2019 May; 33(3):269-276. PubMed ID: 30616374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring of the molecular mechanism of rhinitis via bioinformatics methods.
    Song Y; Yan Z
    Mol Med Rep; 2018 Feb; 17(2):3014-3020. PubMed ID: 29257233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel targets for seasonal allergic rhinitis during and outside the pollen season by microarray analysis.
    Liu Y; Shi J; Chen X
    Acta Otolaryngol; 2015; 135(12):1330-6. PubMed ID: 26189617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of β-catenin on differentially expressed genes in multiple myeloma.
    Chen H; Chai W; Li B; Ni M; Zhang GQ; Liu HW; Zhang Z; Chen JY; Zhou YG; Wang Y
    J Huazhong Univ Sci Technolog Med Sci; 2015 Aug; 35(4):546-552. PubMed ID: 26223925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency.
    Zhang Q; He M; Wang J; Liu S; Cheng H; Cheng Y
    Eur J Obstet Gynecol Reprod Biol; 2015 Mar; 186():91-6. PubMed ID: 25666344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Skt11-regulated genes in chondrocytes by integrated bioinformatics analysis.
    Liang S; Zhang JM; Lv ZT; Cheng P; Zhu WT; Chen AM
    Gene; 2018 Nov; 677():340-348. PubMed ID: 30107230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays.
    Shen H; Wang W; Ni B; Zou Q; Lu H; Wang Z
    Int J Mol Med; 2018 Jul; 42(1):21-30. PubMed ID: 29620143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profiling analysis of the role of miR-22 in clear cell ovarian cancer.
    Zhen YB; Guo XL; Xu B; Zhao HW; Xu CJ
    Neoplasma; 2016; 63(6):856-864. PubMed ID: 27565323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn.
    Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G
    Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of candidate genes for osteoarthritis based on gene expression profiles.
    Dong S; Xia T; Wang L; Zhao Q; Tian J
    Acta Orthop Traumatol Turc; 2016 Dec; 50(6):686-690. PubMed ID: 27866912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive analysis of candidate genes and pathways in pancreatic cancer.
    Liu J; Li J; Li H; Li A; Liu B; Han L
    Tumour Biol; 2015 Mar; 36(3):1849-57. PubMed ID: 25409614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analysis of gene expression profiling for identification of potential key genes among ischemic stroke.
    Zhai K; Kong X; Liu B; Lou J
    Medicine (Baltimore); 2017 Aug; 96(34):e7564. PubMed ID: 28834871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile.
    Lin Z; Lin Y
    Gene; 2017 Sep; 627():322-326. PubMed ID: 28501630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Microarray Analysis in Screening Features of Genes Involved in Spinal Cord Injury.
    Liu Y; Wang Y; Teng Z; Zhang X; Ding M; Zhang Z; Chen J; Xu Y
    Med Sci Monit; 2016 May; 22():1571-81. PubMed ID: 27160807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-22 Impedes the Proliferation of Schwann cells: Transcriptome Sequencing and Bioinformatics Analysis.
    Xu S; Ao J; Gu H; Wang X; Xie C; Meng D; Wang L; Liu M
    Mol Neurobiol; 2017 May; 54(4):2395-2405. PubMed ID: 26960328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated network analysis of transcriptomic and protein-protein interaction data in taurine-treated hepatic stellate cells.
    Liang XQ; Liang J; Zhao XF; Wang XY; Deng X
    World J Gastroenterol; 2019 Mar; 25(9):1067-1079. PubMed ID: 30862995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential biomarkers and latent pathways for vasculitis based on latent pathway identification analysis.
    Zhou T; Zhang Y; Wu P; Sun Q; Guo Y; Yang Y
    Int J Rheum Dis; 2014 Jul; 17(6):671-8. PubMed ID: 24867262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.