BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27435631)

  • 1. The physical origins of transit time measurements for rapid, single cell mechanotyping.
    Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC
    Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
    Sano M; Kaji N; Rowat AC; Yasaki H; Shao L; Odaka H; Yasui T; Higashiyama T; Baba Y
    Anal Chem; 2019 Oct; 91(20):12890-12899. PubMed ID: 31442026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between transit time and mechanical properties of a cell through a stenosed microchannel.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    Soft Matter; 2018 Jan; 14(4):533-545. PubMed ID: 29308825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic in situ mechanical testing of photopolymerized gels.
    Duprat C; Berthet H; Wexler JS; du Roure O; Lindner A
    Lab Chip; 2015 Jan; 15(1):244-52. PubMed ID: 25360871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Lab Chip; 2008 Jul; 8(7):1062-70. PubMed ID: 18584080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput microfluidic single-cell trapping arrays for biomolecular and imaging analysis.
    Li X; Lee AP
    Methods Cell Biol; 2018; 148():35-50. PubMed ID: 30473073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered physical phenotypes of leukemia cells that survive chemotherapy treatment.
    Ly C; Ogana H; Kim HN; Hurwitz S; Deeds EJ; Kim YM; Rowat AC
    Integr Biol (Camb); 2023 Apr; 15():. PubMed ID: 37247849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel.
    Raj A; Dixit M; Doble M; Sen AK
    Lab Chip; 2017 Oct; 17(21):3704-3716. PubMed ID: 28983550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial microfluidic physics.
    Amini H; Lee W; Di Carlo D
    Lab Chip; 2014 Aug; 14(15):2739-61. PubMed ID: 24914632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies.
    Mak M; Erickson D
    Integr Biol (Camb); 2013 Nov; 5(11):1374-84. PubMed ID: 24056324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry.
    Fregin B; Czerwinski F; Biedenweg D; Girardo S; Gross S; Aurich K; Otto O
    Nat Commun; 2019 Jan; 10(1):415. PubMed ID: 30679420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting cancer cell invasion by single-cell physical phenotyping.
    Nyberg KD; Bruce SL; Nguyen AV; Chan CK; Gill NK; Kim TH; Sloan EK; Rowat AC
    Integr Biol (Camb); 2018 Apr; 10(4):218-231. PubMed ID: 29589844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic platforms for single-cell protein analysis.
    Liu Y; Singh AK
    J Lab Autom; 2013 Dec; 18(6):446-54. PubMed ID: 23821679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic approach for rapid multicomponent interfacial tensiometry.
    Cabral JT; Hudson SD
    Lab Chip; 2006 Mar; 6(3):427-36. PubMed ID: 16511627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.