These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27435633)

  • 1. Selective Cu4Pd alloy nanoparticles anchoring on amine functionalized graphite nanosheets and their use as reusable catalysts for a C-C coupling reaction with the sacrificial role of Cu for Pd-regeneration.
    Chakravarty A; De G
    Dalton Trans; 2016 Aug; 45(31):12496-506. PubMed ID: 27435633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu₂O Nanoparticles Anchored on Amine-Functionalized Graphite Nanosheet: A Potential Reusable Catalyst.
    Chakravarty A; Bhowmik K; Mukherjee A; De G
    Langmuir; 2015 May; 31(18):5210-9. PubMed ID: 25902017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd-Ni alloy nanoparticle doped mesoporous SiO₂ film: the sacrificial role of Ni to resist Pd-oxidation in the C-C coupling reaction.
    Saha J; Bhowmik K; Das I; De G
    Dalton Trans; 2014 Sep; 43(35):13325-32. PubMed ID: 25061004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions.
    Diyarbakir S; Can H; Metin Ö
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3199-206. PubMed ID: 25594280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-phosphorus/sulfur nanoparticles (NPs) decorated on graphene oxide: synthesis using the same precursor for NPs and catalytic applications in Suzuki-Miyaura coupling.
    Joshi H; Sharma KN; Sharma AK; Singh AK
    Nanoscale; 2014 May; 6(9):4588-97. PubMed ID: 24626740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Characterization of
    Ishida J; Nakatsuji M; Nagata T; Kawasaki H; Suzuki T; Obora Y
    ACS Omega; 2020 Apr; 5(16):9598-9604. PubMed ID: 32363312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted facile synthesis of palladium nanoparticles in HEPES solution and their size-dependent catalytic activities to Suzuki reaction.
    Zhang W; Wang Q; Qin F; Zhou H; Lu Z; Chen R
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7794-801. PubMed ID: 22097489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures.
    Sarina S; Zhu H; Jaatinen E; Xiao Q; Liu H; Jia J; Chen C; Zhao J
    J Am Chem Soc; 2013 Apr; 135(15):5793-801. PubMed ID: 23566035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid.
    Ho SF; Mendoza-Garcia A; Guo S; He K; Su D; Liu S; Metin Ö; Sun S
    Nanoscale; 2014 Jun; 6(12):6970-3. PubMed ID: 24838646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile fabrication of Cu-based alloy nanoparticles encapsulated within hollow octahedral N-doped porous carbon for selective oxidation of hydrocarbons.
    Zhong H; Wang Y; Cui C; Zhou F; Hu S; Wang R
    Chem Sci; 2018 Dec; 9(46):8703-8710. PubMed ID: 30595835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature coalescence of Pd nanoparticles with sacrificial templates and sintering agents, and their catalytic activities in the Suzuki coupling reaction.
    Okada S; Nakahara Y; Watanabe M; Tamai T; Kobayashi Y; Yajima S
    RSC Adv; 2022 May; 12(23):14535-14543. PubMed ID: 35702252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions.
    Boucher MB; Zugic B; Cladaras G; Kammert J; Marcinkowski MD; Lawton TJ; Sykes EC; Flytzani-Stephanopoulos M
    Phys Chem Chem Phys; 2013 Aug; 15(29):12187-96. PubMed ID: 23793350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction.
    Zheng Y; Zhao S; Liu S; Yin H; Chen YY; Bao J; Han M; Dai Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5347-57. PubMed ID: 25695756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetically Controlled Direct Synthesis of B2- and A1-Structured Cu-Pd Nanoparticles.
    Ishijima M; Todoroki N; Cuya Huaman JL; Tanaka Y; Balachandran J
    Inorg Chem; 2023 Nov; 62(47):19270-19278. PubMed ID: 37948849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis.
    Blosi M; Ortelli S; Costa AL; Dondi M; Lolli A; Andreoli S; Benito P; Albonetti S
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendrimer-templated Pd nanoparticles and Pd nanoparticles synthesized by reverse microemulsions as efficient nanocatalysts for the Heck reaction: A comparative study.
    Noh JH; Meijboom R
    J Colloid Interface Sci; 2014 Feb; 415():57-69. PubMed ID: 24267330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.
    Khan M; Khan M; Kuniyil M; Adil SF; Al-Warthan A; Alkhathlan HZ; Tremel W; Tahir MN; Siddiqui MR
    Dalton Trans; 2014 Jun; 43(24):9026-31. PubMed ID: 24619034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.