These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27435753)

  • 1. Microfluidic droplet trapping, splitting and merging with feedback controls and state space modelling.
    Wong D; Ren CL
    Lab Chip; 2016 Aug; 16(17):3317-29. PubMed ID: 27435753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.
    Shen F; Li Y; Liu Z; Li X
    Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection.
    Axt B; Hsieh YF; Nalayanda D; Wang TH
    Biomed Microdevices; 2017 Sep; 19(3):61. PubMed ID: 28681238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging.
    Nan L; Mao T; Shum HC
    Microsyst Nanoeng; 2023; 9():24. PubMed ID: 36910256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automated on-demand control of individual droplets with a sample application to a drug screening assay.
    Hébert M; Courtney M; Ren CL
    Lab Chip; 2019 Apr; 19(8):1490-1501. PubMed ID: 30912559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoropolymer surface coatings to control droplets in microfluidic devices.
    Riche CT; Zhang C; Gupta M; Malmstadt N
    Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC electric field induced droplet deformation in a microfluidic T-junction.
    Xi HD; Guo W; Leniart M; Chong ZZ; Tan SH
    Lab Chip; 2016 Aug; 16(16):2982-6. PubMed ID: 27173587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet-merging platform for comparative functional analysis of m1 and m2 macrophages in response to e. coli-induced stimuli.
    Hondroulis E; Movila A; Sabhachandani P; Sarkar S; Cohen N; Kawai T; Konry T
    Biotechnol Bioeng; 2017 Mar; 114(3):705-709. PubMed ID: 27723125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes.
    Chaudhuri J; Timung S; Dandamudi CB; Mandal TK; Bandyopadhyay D
    Electrophoresis; 2017 Jan; 38(2):278-286. PubMed ID: 27436402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets.
    Geng H; Feng J; Stabryla LM; Cho SK
    Lab Chip; 2017 Mar; 17(6):1060-1068. PubMed ID: 28217772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Demand Droplet Merging with an AC Electric Field for Multiple-Volume Droplet Generation.
    Teo AJT; Tan SH; Nguyen NT
    Anal Chem; 2020 Jan; 92(1):1147-1153. PubMed ID: 31763821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional electrode for highly efficient electrocoalescence-based droplet merging.
    Guzman AR; Kim HS; de Figueiredo P; Han A
    Biomed Microdevices; 2015 Apr; 17(2):35. PubMed ID: 25681970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.