These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2743579)

  • 1. Interactions with hemoglobin: a source of error in measurements of transketolase activity in hemolysates.
    Grudzinski A; Waltham M; Ioannoni B; Price J; Nixon PF
    Clin Chim Acta; 1989 Apr; 180(3):265-75. PubMed ID: 2743579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Michaelis constant for human erythrocyte transketolase and thiamin diphosphate.
    Tate JR; Nixon PF
    Anal Biochem; 1987 Jan; 160(1):78-87. PubMed ID: 3565758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous-flow (AutoAnalyzer II) procedure for measuring erythrocyte transketolase activity.
    Waring PP; Fisher D; McDonnell J; McGown EL; Sauberlich HE
    Clin Chem; 1982 Nov; 28(11):2206-13. PubMed ID: 7127765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radiochemical method for the determination of transketolase activity in erythrocyte hemolysates.
    Reijnierse GL; van der Horst AR; de Kloet K; Voorhorst CD
    Clin Chim Acta; 1978 Dec; 90(3):259-68. PubMed ID: 215350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for the suppressive effect of haemoglobin on NADH absorbance in the transketolase assay.
    Buttery JE; Milner CR; Chamberlain BR
    Clin Chim Acta; 1980 Mar; 102(2-3):221-5. PubMed ID: 7371189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between pyridine nucleotide coenzymes and heme proteins as a possible source of error in assay of activities of coenzyme-linked enzyme.
    Jeyasingham MD; Pratt OE; Roopral HK
    Clin Chem; 1989 Oct; 35(10):2129-33. PubMed ID: 2551542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase.
    Naula C; Alibu VP; Brock JM; Veitch NJ; Burchmore RJ; Barrett MP
    J Biochem Biophys Methods; 2008 Apr; 70(6):1185-7. PubMed ID: 18053578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstable variant of NADH methemoglobin reductase in Puerto Ricans with hereditary methemoglobinemia.
    Schwartz JM; Paress PS; Ross JM; DiPillo F; Rizek R
    J Clin Invest; 1972 Jun; 51(6):1594-601. PubMed ID: 4336945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorimetric method for measurement of erythrocyte transketolase activity.
    Anderson SH; Nicol AD
    Ann Clin Biochem; 1986 Mar; 23 ( Pt 2)():180-9. PubMed ID: 3767264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol and application of basal erythrocyte transketolase activity to improve assessment of thiamine status.
    Jones KS; Parkington DA; Bourassa MW; Cerami C; Koulman A
    Ann N Y Acad Sci; 2023 Mar; 1521(1):104-111. PubMed ID: 36719404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dependence of human erythrocyte methemoglobin reductase on temperature].
    Kozlova NM; Chernitskiĭ EA
    Biokhimiia; 1991 Feb; 56(2):342-5. PubMed ID: 1873346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A NADH-dependent transketolase assay in erythrocyte hemolysates.
    Smeets EH; Muller H; de Wael J
    Clin Chim Acta; 1971 Jul; 33(2):379-86. PubMed ID: 4330339
    [No Abstract]   [Full Text] [Related]  

  • 14. High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies.
    Berthon HA; Kuchel PW; Nixon PF
    Biochemistry; 1992 Dec; 31(51):12792-8. PubMed ID: 1463749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Transketolase activity in rabbit myocardium and erythrocytes in health and in allergic heart diseases].
    Grosdova MD; Astakhova TA
    Vopr Med Khim; 1975; 21(4):363-6. PubMed ID: 1216755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variants of transketolase from human erythrocytes.
    Kaczmarek MJ; Nixon PF
    Clin Chim Acta; 1983 Jun; 130(3):349-56. PubMed ID: 6191889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the thiamin pyrophosphate effect and the saturation status of the transketolase with its coenzyme in human erythrocytes.
    Takeuchi T; Jung EH; Nishino K; Itokawa Y
    Int J Vitam Nutr Res; 1990; 60(2):112-20. PubMed ID: 2210959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of interference by hemoglobin in the determination of total bilirubin. II. Method of Jendrassik-Grof.
    Shull BC; Lees H; Li PK
    Clin Chem; 1980 Jan; 26(1):26-9. PubMed ID: 7356567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of, and preparation of an antibody to, transketolase from human red blood cells.
    Takeuchi T; Nishino K; Itokawa Y
    Biochim Biophys Acta; 1986 Jul; 872(1-2):24-32. PubMed ID: 3089282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte transketolase, a new semi-automated method.
    Van Zanten AP; Beijer C; Mairuhu WM; Van den Ende A
    Clin Chim Acta; 1980 Aug; 105(3):303-10. PubMed ID: 7408190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.