BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27435795)

  • 1. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.
    Cuenca A; Ross TG; Graham SW; Barrett CF; Davis JI; Seberg O; Petersen G
    Genome Biol Evol; 2016 Aug; 8(7):2176-89. PubMed ID: 27435795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are substitution rates and RNA editing correlated?
    Cuenca A; Petersen G; Seberg O; Davis JI; Stevenson DW
    BMC Evol Biol; 2010 Nov; 10():349. PubMed ID: 21070620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss.
    Hepburn NJ; Schmidt DW; Mower JP
    Mol Biol Evol; 2012 Oct; 29(10):3111-20. PubMed ID: 22593225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria.
    Edera AA; Gandini CL; Sanchez-Puerta MV
    Plant Mol Biol; 2018 Jun; 97(3):215-231. PubMed ID: 29761268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.
    Wang W; Wu Y; Messing J
    PLoS One; 2012; 7(10):e46747. PubMed ID: 23056432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate accelerations in plastid and mitochondrial genomes of Cyperaceae occur in the same clades.
    Lee C; Ruhlman TA; Jansen RK
    Mol Phylogenet Evol; 2023 May; 182():107760. PubMed ID: 36921696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete mitochondrial genome of Cycas debaoensis revealed unexpected static evolution in gymnosperm species.
    Habib S; Dong S; Liu Y; Liao W; Zhang S
    PLoS One; 2021; 16(7):e0255091. PubMed ID: 34293066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is RNA editing implicated in group II intron survival in the angiosperm mitochondrial genome?
    Kagami H; Nagano H; Takahashi Y; Mikami T; Kubo T
    Genome; 2012 Jan; 55(1):75-9. PubMed ID: 22224446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force.
    Sloan DB; MacQueen AH; Alverson AJ; Palmer JD; Taylor DR
    Genetics; 2010 Aug; 185(4):1369-80. PubMed ID: 20479143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron.
    Edera AA; Howell KA; Nevill PG; Small I; Sanchez-Puerta MV
    Gene; 2023 Jun; 869():147393. PubMed ID: 36966978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae.
    Zumkeller SM; Knoop V; Knie N
    Genome Biol Evol; 2016 Aug; 8(8):2505-19. PubMed ID: 27492234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genes and processed paralogs co-exist in plant mitochondria.
    Cuenca A; Petersen G; Seberg O; Jahren AH
    J Mol Evol; 2012 Apr; 74(3-4):158-69. PubMed ID: 22484699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses.
    Wu Z; Sloan DB; Brown CW; Rosenblueth M; Palmer JD; Ong HC
    Mol Biol Evol; 2017 Sep; 34(9):2340-2354. PubMed ID: 28541477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle Genomes and Transcriptomes of
    He ZS; Zhu A; Yang JB; Fan W; Li DZ
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis.
    Fan W; Guo W; Funk L; Mower JP; Zhu A
    Sci China Life Sci; 2019 Apr; 62(4):498-506. PubMed ID: 30863960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron.
    Daniell H; Wurdack KJ; Kanagaraj A; Lee SB; Saski C; Jansen RK
    Theor Appl Genet; 2008 Mar; 116(5):723-37. PubMed ID: 18214421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial genomes of the early land plant lineage liverworts (Marchantiophyta): conserved genome structure, and ongoing low frequency recombination.
    Dong S; Zhao C; Zhang S; Zhang L; Wu H; Liu H; Zhu R; Jia Y; Goffinet B; Liu Y
    BMC Genomics; 2019 Dec; 20(1):953. PubMed ID: 31818248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms.
    Ran JH; Gao H; Wang XQ
    Mol Phylogenet Evol; 2010 Jan; 54(1):136-49. PubMed ID: 19761858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium.
    Choi K; Weng ML; Ruhlman TA; Jansen RK
    Mol Phylogenet Evol; 2021 Feb; 155():106986. PubMed ID: 33059063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes.
    Petersen G; Cuenca A; Zervas A; Ross GT; Graham SW; Barrett CF; Davis JI; Seberg O
    PLoS One; 2017; 12(5):e0177606. PubMed ID: 28545148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.