These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27435871)

  • 1. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.
    Ranucci M; Carboni G; Cotza M; de Somer F
    Perfusion; 2017 Jan; 32(1):4-12. PubMed ID: 27435871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen consumption, carbon dioxide production and lactic acid during normothermic cardiopulmonary bypass.
    Engoren M; Evans M
    Perfusion; 2000 Sep; 15(5):441-6. PubMed ID: 11001167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters.
    Ranucci M; Isgrò G; Romitti F; Mele S; Biagioli B; Giomarelli P
    Ann Thorac Surg; 2006 Jun; 81(6):2189-95. PubMed ID: 16731152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen consumption plateauing: a better method of achieving optimum perfusion. 1979.
    Mandl JP; Motley JR
    J Extra Corpor Technol; 2008 Dec; 40(4):281-9. PubMed ID: 19192760
    [No Abstract]   [Full Text] [Related]  

  • 5. Plateauing oxygen consumption.
    Riley JB
    J Extra Corpor Technol; 2008 Dec; 40(4):279-80. PubMed ID: 19192759
    [No Abstract]   [Full Text] [Related]  

  • 6. A review of using CO
    Zhang Y; Zhou R
    Perfusion; 2024 Apr; 39(3):445-451. PubMed ID: 36734648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cardiopulmonary bypass perfusion pressure on myocardial gas tensions in the presence of coronary stenosis.
    Khuri SF; Brawley RK; O'Riordan JB; Donahoo JS; Pitt B; Gott VL
    Ann Thorac Surg; 1975 Dec; 20(6):661-70. PubMed ID: 1212000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygenator exhaust capnography: a method of estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Zia M; Davies FW; Alston RP; Anaes FC
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):42-5. PubMed ID: 1543852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB; FitzGerald D; Fenton T; Fosberg AM; Camann W; Maffeo N; Winkelman J
    J Thorac Cardiovasc Surg; 1991 Sep; 102(3):431-9. PubMed ID: 1908928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed venous-arterial CO2 tension gradient after cardiopulmonary bypass.
    Takami Y; Masumoto H
    Asian Cardiovasc Thorac Ann; 2005 Sep; 13(3):255-60. PubMed ID: 16113000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide production during cardiopulmonary bypass: continuous measure and clinical relevance.
    Celestino C
    Rev Port Cir Cardiotorac Vasc; 2019; 26(3):183-184. PubMed ID: 31734967
    [No Abstract]   [Full Text] [Related]  

  • 12. Direct expiratory gas analysis after hypothermic cardiopulmonary bypass.
    Moriyama S; Utoh J; Okamoto K; Tanaka M; Kunitomo R; Hara M; Kitamura N
    Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):150-5. PubMed ID: 10413760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low-flow perfusion, and pulsatile low-flow perfusion.
    Watanabe T; Orita H; Kobayashi M; Washio M
    J Thorac Cardiovasc Surg; 1989 Mar; 97(3):396-401. PubMed ID: 2493109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-like growth factor 1 improves the relationship between systemic oxygen consumption and delivery in piglets after cardiopulmonary bypass.
    Li J; Stenbøg E; Bush A; Grøfte T; Redington AN; Penny DJ
    J Thorac Cardiovasc Surg; 2004 May; 127(5):1436-41. PubMed ID: 15116005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the conjunctiva for carbon dioxide and oxygen tensions and pH during cardiopulmonary bypass.
    Weiss IK; Isenberg SJ; McArthur DL; Del Signore M; McDonald JS
    J Extra Corpor Technol; 2011 Mar; 43(1):13-8. PubMed ID: 21449229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional ischemia distal to a critical coronary stenosis during prolonged fibrillation--improvement with pulsatile perfusion.
    Schaff HV; Ciardullo RC; Flaherty JT; Brawley RK; Gott VL
    Circulation; 1977 Sep; 56(3 Suppl):II25-32. PubMed ID: 884825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of cerebral oxymetry for assessing cerebral arteriolar carbon dioxide reactivity during cardiopulmonary bypass.
    Ariturk C; Okten M; Ozgen ZS; Erkek E; Uysal P; Gullu U; Senay S; Karabulut H; Alhan C; Toraman F
    Heart Surg Forum; 2014 Jun; 17(3):E169-72. PubMed ID: 25002395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Carbon Dioxide Monitoring During Adult Cardiopulmonary Resuscitation.
    Pantazopoulos C; Xanthos T; Pantazopoulos I; Papalois A; Kouskouni E; Iacovidou N
    Heart Lung Circ; 2015 Nov; 24(11):1053-61. PubMed ID: 26150002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of pulsatile blood flow in low flow perfusion at deep hypothermia--analysis of brain tissue pH, PCO2 and PO2].
    Watanabe T
    Nihon Kyobu Geka Gakkai Zasshi; 1988 Mar; 36(3):322-9. PubMed ID: 3135363
    [No Abstract]   [Full Text] [Related]  

  • 20. What is optimal flow and how to validate this.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):278-80. PubMed ID: 18293819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.