These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27435871)

  • 41. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass.
    Soller BR; Idwasi PO; Balaguer J; Levin S; Simsir SA; Vander Salm TJ; Collette H; Heard SO
    Crit Care Med; 2003 Sep; 31(9):2324-31. PubMed ID: 14501963
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pressure and oxygen debt on bypass - potential quality markers of perfusion?
    Poullis M; Palmer K; Al-Rawi O; Johnson I; Ridgeway T
    Perfusion; 2012 May; 27(3):244-8. PubMed ID: 22547640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass.
    Baraka A; El-Khatib M; Muallem E; Jamal S; Haroun-Bizri S; Aouad M
    J Extra Corpor Technol; 2005 Jun; 37(2):192-5. PubMed ID: 16117458
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Somatosensory evoked potentials and cerebral metabolism during cardiopulmonary bypass with special reference to hypotension induced by prostacyclin infusion.
    Arén C; Badr G; Feddersen K; Rådegran K
    J Thorac Cardiovasc Surg; 1985 Jul; 90(1):73-9. PubMed ID: 3925243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Pulsatile assistance for circulatory arrest, low-flow perfusion, and moderate-flow perfusion.
    Watanabe T; Miura M; Orita H; Kobayasi M; Washio M
    J Thorac Cardiovasc Surg; 1990 Aug; 100(2):274-80. PubMed ID: 2117099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane oxygenator exhaust capnography for continuously estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Potger KC; McMillan D; Southwell J; Dando H; O'Shaughnessy K
    J Extra Corpor Technol; 2003 Sep; 35(3):218-23. PubMed ID: 14653424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of regional tissue oxygenation.
    Siegemund M; van Bommel J; Ince C
    Intensive Care Med; 1999 Oct; 25(10):1044-60. PubMed ID: 10551958
    [No Abstract]   [Full Text] [Related]  

  • 48. Augmentation of CO2 transfer in membrane lungs by the infusion of a metabolizable organic acid.
    Snider MT; Chaudhari SN; Richard RB; Whitcomb DR; Russell GB
    ASAIO Trans; 1987; 33(3):345-51. PubMed ID: 3118914
    [No Abstract]   [Full Text] [Related]  

  • 49. Effects of mean arterial pressure on cerebral perfusion during cardiopulmonary bypass: a review.
    Pepin E; Dulan S
    J Extra Corpor Technol; 2003 Dec; 35(4):297-303. PubMed ID: 14979420
    [No Abstract]   [Full Text] [Related]  

  • 50. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alpha-stat capnography for the Sorin Monolyth oxygenator.
    McCloskey DB; Strickler RF; Reusch GW
    J Extra Corpor Technol; 1994; 26(2):64-7. PubMed ID: 10147370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of venous pCO
    Gerritse M; van Hoeven M; Overdevest E
    Perfusion; 2023 May; 38(4):801-806. PubMed ID: 35393901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass.
    Castaneda AR; Jonas RA; Mayer JE
    J Thorac Cardiovasc Surg; 1989 Mar; 97(3):471-3. PubMed ID: 2493110
    [No Abstract]   [Full Text] [Related]  

  • 54. [Assessment of peripheral blood perfusion during open heart surgery with sublingual PCO2 measured by ISFET-PCO2 sensor].
    Inoue H; Tsuchida M; Takano Y; Sato I; Sato Y; Ikegami K; Sekiguchi T; Nagai Y
    Masui; 2002 Oct; 51(10):1155-65. PubMed ID: 12428329
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Standard blood flow rates of cardiopulmonary bypass are adequate in awake on-pump cardiac surgery.
    Porizka M; Stritesky M; Semrad M; Dobias M; Dohnalova A; Korinek J
    Eur J Cardiothorac Surg; 2011 Apr; 39(4):442-50. PubMed ID: 21237669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxygen and carbon dioxide monitoring during sleep.
    Amaddeo A; Fauroux B
    Paediatr Respir Rev; 2016 Sep; 20():42-44. PubMed ID: 26724141
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continuous end-tidal carbon dioxide monitoring in pediatric intensive care units.
    Langhan M
    J Crit Care; 2009 Jun; 24(2):227-30. PubMed ID: 19327292
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon dioxide field flooding techniques for open heart surgery: monitoring and minimizing potential adverse effects.
    Nadolny EM; Svensson LG
    Perfusion; 2000 Mar; 15(2):151-3. PubMed ID: 10789570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Clinical investigation on subcutaneous tissue gas change during cardiopulmonary bypass--significance of perfusion pressure (author's transl)].
    Kinoshita O
    Masui; 1979 Dec; 28(13):1664-77. PubMed ID: 529400
    [No Abstract]   [Full Text] [Related]  

  • 60. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders.
    Monnet X; Julien F; Ait-Hamou N; Lequoy M; Gosset C; Jozwiak M; Persichini R; Anguel N; Richard C; Teboul JL
    Crit Care Med; 2013 Jun; 41(6):1412-20. PubMed ID: 23442986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.