These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27435912)

  • 21. A ligand-induced homojunction between aluminum-based superatomic clusters.
    Bista D; Chauhan V; Sengupta T; Reber AC; Khanna SN
    Nanoscale; 2020 Jun; 12(22):12046-12056. PubMed ID: 32469025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms.
    Cakır D; Gülseren O
    J Phys Condens Matter; 2012 Aug; 24(30):305301. PubMed ID: 22763370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: a computational study.
    Wang J; Zhao Y; Li J; Huang HC; Chen J; Cheng SB
    Phys Chem Chem Phys; 2019 Jul; 21(27):14865-14872. PubMed ID: 31232409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superatomic Ligand-Field Splitting in Ligated Gold Nanoclusters.
    Zhang JX; Sheong FK; Lin Z
    Inorg Chem; 2020 Jul; 59(13):8864-8870. PubMed ID: 32538629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic properties of [core+exo]-type gold clusters: factors affecting the unique optical transitions.
    Shichibu Y; Konishi K
    Inorg Chem; 2013 Jun; 52(11):6570-5. PubMed ID: 23679833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the electronic structures and relative stabilities of monomagnesium oxide clusters MgO(x)- and MgO(x) (x = 1-4): a combined photoelectron imaging and theoretical investigation.
    Cheng S; Berkdemir C; Melko JJ; Castleman AW
    J Phys Chem A; 2013 Nov; 117(46):11896-905. PubMed ID: 23692206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong Effect of Organic Ligands on the Electronic Structure of Metal-Chalcogenide Clusters.
    Chauhan V; Khanna SN
    J Phys Chem A; 2018 Jul; 122(28):6014-6020. PubMed ID: 29953818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster assemblies as superatomic solids: a first principles study of bonding & electronic structure.
    Schacht J; Gaston N
    Phys Chem Chem Phys; 2018 Feb; 20(9):6167-6175. PubMed ID: 29431758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into the Geometric and Electronic Structures of Gold/Silver Superatomic Clusters Based on Icosahedron M
    Jin S; Wang S; Zhu M
    Chem Asian J; 2019 Oct; 14(19):3222-3231. PubMed ID: 31368672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From the Superatom Model to a Diverse Array of Super-Elements: A Systematic Study of Dopant Influence on the Electronic Structure of Thiolate-Protected Gold Clusters.
    Schacht J; Gaston N
    Chemphyschem; 2016 Oct; 17(20):3237-3244. PubMed ID: 27539555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2Itoh M; Kumar V; Adschiri T; Kawazoe Y
    J Chem Phys; 2009 Nov; 131(17):174510. PubMed ID: 19895028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Throwing jellium at gallium--a systematic superatom analysis of metalloid gallium clusters.
    Schebarchov D; Gaston N
    Phys Chem Chem Phys; 2011 Dec; 13(47):21109-15. PubMed ID: 22012313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymeric tungsten carbide nanoclusters: structural evolution, ligand modulation, and assembled nanomaterials.
    Li J; Huang HC; Wang J; Zhao Y; Chen J; Bu YX; Cheng SB
    Nanoscale; 2019 Nov; 11(42):19903-19911. PubMed ID: 31599909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure, vibrational, and optical properties of platinum cluster: a density functional theory approach.
    Singh NB; Sarkar U
    J Mol Model; 2014 Dec; 20(12):2537. PubMed ID: 25451143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the structural and electronic properties of small aluminum dideuteride clusters.
    Shao P; Kuang XY; Ding LP; Zhong MM; Zhao YR
    J Mol Graph Model; 2014 Sep; 53():168-178. PubMed ID: 25155317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@Au₂₄(SR)₁₈ Clusters (M = Pd, Pt).
    Kwak K; Tang Q; Kim M; Jiang DE; Lee D
    J Am Chem Soc; 2015 Aug; 137(33):10833-40. PubMed ID: 26222199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined experimental and theoretical study of Al(n)X (n = 1-6; X = As, Sb) clusters: evidence of aromaticity and the Jellium model.
    Melko JJ; Clayborne PA; Jones CE; Reveles JU; Gupta U; Khanna SN; Castleman AW
    J Phys Chem A; 2010 Feb; 114(5):2045-52. PubMed ID: 20070095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of the structural and electronic properties of beryllium-doped aluminum clusters: comparison with neutral and cationic aluminum clusters.
    Sun WM; Li Y; Wu D; Li ZR
    Phys Chem Chem Phys; 2012 Dec; 14(47):16467-75. PubMed ID: 23132090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational investigation of TiSin (n=2-15) clusters by the density-functional theory.
    Guo LJ; Liu X; Zhao GF; Luo YH
    J Chem Phys; 2007 Jun; 126(23):234704. PubMed ID: 17600432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.