These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27436555)

  • 1. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores?
    Rane RV; Walsh TK; Pearce SL; Jermiin LS; Gordon KH; Richards S; Oakeshott JG
    Curr Opin Insect Sci; 2016 Feb; 13():70-76. PubMed ID: 27436555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detoxifying enzyme complements and host use phenotypes in 160 insect species.
    Rane RV; Ghodke AB; Hoffmann AA; Edwards OR; Walsh TK; Oakeshott JG
    Curr Opin Insect Sci; 2019 Feb; 31():131-138. PubMed ID: 31109666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance.
    Schama R; Pedrini N; Juárez MP; Nelson DR; Torres AQ; Valle D; Mesquita RD
    Insect Biochem Mol Biol; 2016 Feb; 69():91-104. PubMed ID: 26079630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene amplification and insecticide resistance.
    Bass C; Field LM
    Pest Manag Sci; 2011 Aug; 67(8):886-90. PubMed ID: 21538802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee.
    Claudianos C; Ranson H; Johnson RM; Biswas S; Schuler MA; Berenbaum MR; Feyereisen R; Oakeshott JG
    Insect Mol Biol; 2006 Oct; 15(5):615-36. PubMed ID: 17069637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic analysis of detoxification genes in the mosquito Aedes aegypti.
    Strode C; Wondji CS; David JP; Hawkes NJ; Lumjuan N; Nelson DR; Drane DR; Karunaratne SH; Hemingway J; Black WC; Ranson H
    Insect Biochem Mol Biol; 2008 Jan; 38(1):113-23. PubMed ID: 18070670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insect cytochrome P-450: metabolism and resistance to insecticides.
    Hodgson E; Rose RL; Goh DK; Rock GC; Roe RM
    Biochem Soc Trans; 1993 Nov; 21(4):1060-5. PubMed ID: 8131898
    [No Abstract]   [Full Text] [Related]  

  • 8. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance.
    Alyokhin A; Chen YH
    Curr Opin Insect Sci; 2017 Jun; 21():33-38. PubMed ID: 28822486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics.
    Li X; Schuler MA; Berenbaum MR
    Annu Rev Entomol; 2007; 52():231-53. PubMed ID: 16925478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance.
    Hemingway J
    Insect Biochem Mol Biol; 2000 Nov; 30(11):1009-15. PubMed ID: 10989287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis.
    Zhou D; Liu X; Sun Y; Ma L; Shen B; Zhu C
    PLoS One; 2015; 10(11):e0143387. PubMed ID: 26588704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CncC/Maf-mediated xenobiotic response pathway in insects.
    Palli SR
    Arch Insect Biochem Physiol; 2020 Jun; 104(2):e21674. PubMed ID: 32281173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.
    Liu N; Li M; Gong Y; Liu F; Li T
    Pestic Biochem Physiol; 2015 May; 120():77-81. PubMed ID: 25987224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genomics of insecticide resistance.
    Oakeshott JG; Home I; Sutherland TD; Russell RJ
    Genome Biol; 2003; 4(1):202. PubMed ID: 12540295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.
    Zhu F; Li T; Zhang L; Liu N
    BMC Physiol; 2008 Sep; 8():18. PubMed ID: 18817570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors.
    Pavlidi N; Vontas J; Van Leeuwen T
    Curr Opin Insect Sci; 2018 Jun; 27():97-102. PubMed ID: 30025642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome profiling reveals candidate genes related to insecticide resistance of
    Su H; Gao Y; Liu Y; Li X; Liang Y; Dai X; Xu Y; Zhou Y; Wang H
    Bull Entomol Res; 2020 Feb; 110(1):57-67. PubMed ID: 31217039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome Analysis and Identification of Major Detoxification Gene Families and Insecticide Targets in Grapholita Molesta (Busck) (Lepidoptera: Tortricidae).
    Guo Y; Chai Y; Zhang L; Zhao Z; Gao LL; Ma R
    J Insect Sci; 2017 Jan; 17(2):. PubMed ID: 28365764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of detoxification-related gene superfamilies across five hemipteran species.
    Volonté M; Traverso L; Estivalis JML; Almeida FC; Ons S
    BMC Genomics; 2022 Nov; 23(1):757. PubMed ID: 36396986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism.
    Lee SH; Kang JS; Min JS; Yoon KS; Strycharz JP; Johnson R; Mittapalli O; Margam VM; Sun W; Li HM; Xie J; Wu J; Kirkness EF; Berenbaum MR; Pittendrigh BR; Clark JM
    Insect Mol Biol; 2010 Oct; 19(5):599-615. PubMed ID: 20561088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.