These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27436628)

  • 1. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming.
    Han E; Peters IR; Jaeger HM
    Nat Commun; 2016 Jul; 7():12243. PubMed ID: 27436628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of dynamic shear jamming in dense suspensions.
    Peters IR; Majumdar S; Jaeger HM
    Nature; 2016 Apr; 532(7598):214-7. PubMed ID: 27042934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact-activated solidification of dense suspensions via dynamic jamming fronts.
    Waitukaitis SR; Jaeger HM
    Nature; 2012 Jul; 487(7406):205-9. PubMed ID: 22785316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids.
    Kurkin A; Lipik V; Zhang X; Tok A
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear jamming and fragility in fractal suspensions under confinement.
    C K S; Majumdar S; Sood AK
    Soft Matter; 2022 Nov; 18(46):8813-8819. PubMed ID: 36367113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling shear jamming in dense suspensions via the particle aspect ratio.
    James NM; Xue H; Goyal M; Jaeger HM
    Soft Matter; 2019 May; 15(18):3649-3654. PubMed ID: 30994148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force and Mass Dynamics in Non-Newtonian Suspensions.
    Lim MX; Barés J; Zheng H; Behringer RP
    Phys Rev Lett; 2017 Nov; 119(18):184501. PubMed ID: 29219562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-2D dynamic jamming in cornstarch suspensions: visualization and force measurements.
    Peters IR; Jaeger HM
    Soft Matter; 2014 Sep; 10(34):6564-70. PubMed ID: 25044124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology.
    James NM; Hsu CP; Spencer ND; Jaeger HM; Isa L
    J Phys Chem Lett; 2019 Apr; 10(8):1663-1668. PubMed ID: 30896954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of solvent molecular weight in shear thickening and shear jamming.
    van der Naald M; Zhao L; Jackson GL; Jaeger HM
    Soft Matter; 2021 Mar; 17(11):3144-3152. PubMed ID: 33600547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signature of jamming under steady shear in dense particulate suspensions.
    Dhar S; Chattopadhyay S; Majumdar S
    J Phys Condens Matter; 2020 Mar; 32(12):124002. PubMed ID: 31770741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic shear jamming in dense granular suspensions under extension.
    Majumdar S; Peters IR; Han E; Jaeger HM
    Phys Rev E; 2017 Jan; 95(1-1):012603. PubMed ID: 28208491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear thickening and jamming in densely packed suspensions of different particle shapes.
    Brown E; Zhang H; Forman NA; Maynor BW; Betts DE; DeSimone JM; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031408. PubMed ID: 22060372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress Controlled Rheology of Dense Suspensions Using Transient Flows.
    Han E; James NM; Jaeger HM
    Phys Rev Lett; 2019 Dec; 123(24):248002. PubMed ID: 31922854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-driven solidification of dilute colloidal suspensions.
    Zaccone A; Gentili D; Wu H; Morbidelli M; Del Gado E
    Phys Rev Lett; 2011 Apr; 106(13):138301. PubMed ID: 21517426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions.
    James NM; Han E; de la Cruz RAL; Jureller J; Jaeger HM
    Nat Mater; 2018 Nov; 17(11):965-970. PubMed ID: 30297814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear thickening of cornstarch suspensions as a reentrant jamming transition.
    Fall A; Huang N; Bertrand F; Ovarlez G; Bonn D
    Phys Rev Lett; 2008 Jan; 100(1):018301. PubMed ID: 18232829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear-induced rigidity in athermal materials: A unified statistical framework.
    Sarkar S; Chakraborty B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042201. PubMed ID: 25974478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of a disordered solid via a shock-induced transition in a dense particle suspension.
    Petel OE; Frost DL; Higgins AJ; Ouellet S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021401. PubMed ID: 22463206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture and relaxation in dense cornstarch suspensions.
    Lilin P; Elkhoury JE; Peters IR; Bischofberger I
    PNAS Nexus; 2024 Jan; 3(1):pgad451. PubMed ID: 38222467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.