These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27436701)

  • 1. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.
    Perez-Garcia H; Barquero R
    Rev Esp Med Nucl Imagen Mol; 2017; 36(1):27-36. PubMed ID: 27436701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.
    van der Velden S; Beijst C; Viergever MA; de Jong HW
    Med Phys; 2017 Jan; 44(1):249-261. PubMed ID: 28044322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new method for elimination of artifacts produced by collimator septum effect in gamma-camera images (author's transl)].
    Uchida I; Onai Y; Tomaru T; Irifune T; Kakegawa M; Kumano N
    Radioisotopes; 1978 Jun; 27(6):318-23. PubMed ID: 684231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a novel collimator for molecular breast tomosynthesis.
    Gilland DR; Welch BL; Lee S; Kross B; Weisenberger AG
    Med Phys; 2017 Nov; 44(11):5740-5748. PubMed ID: 28877351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and performance evaluation of a new high energy parallel hole collimator for radioiodine planar imaging by gamma cameras: Monte Carlo simulation study.
    Moslemi V; Ashoor M
    Ann Nucl Med; 2017 May; 31(4):324-334. PubMed ID: 28275975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a wire-mesh collimator for gamma cameras.
    Saripan MI; Petrou M; Wells K
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1598-612. PubMed ID: 17867352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling.
    Van Holen R; Vandenberghe S; Staelens S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1989-2002. PubMed ID: 18356576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrinsic Versus Intrinsic Uniformity Correction for γ-cameras.
    Bolstad R; Brown J; Grantham V
    J Nucl Med Technol; 2011 Sep; 39(3):208-12. PubMed ID: 21795372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation study on a stationary data acquisition SPECT system with multi-pinhole collimators attached to a triple-head gamma camera system.
    Ogawa K; Ichimura Y
    Ann Nucl Med; 2014 Oct; 28(8):716-24. PubMed ID: 24916488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot and cold contrasts in high-resolution Tc-99m planar scintigraphy: a survey of fifty-two camera heads using the PICKER thyroid phantom.
    Seret A
    Phys Med; 2010; 26(3):166-72. PubMed ID: 19604713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo modelling of the performance of a rotating slit-collimator for improved planar gamma-camera imaging.
    Webb S; Binnie DM; Flower MA; Ott RJ
    Phys Med Biol; 1992 May; 37(5):1095-108. PubMed ID: 1608998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a small cadmium zinc telluride detector for scintimammography.
    Mueller B; O'Connor MK; Blevis I; Rhodes DJ; Smith R; Collins DA; Phillips SW
    J Nucl Med; 2003 Apr; 44(4):602-9. PubMed ID: 12679406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a pixelated GSO gamma camera system with tungsten parallel hole collimator for single photon imaging.
    Yamamoto S; Watabe H; Kanai Y; Shimosegawa E; Hatazawa J
    Med Phys; 2012 Feb; 39(2):581-8. PubMed ID: 22320767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D; Bitar A; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrument- and computer-related problems and artifacts in nuclear medicine.
    O'Connor MK
    Semin Nucl Med; 1996 Oct; 26(4):256-77. PubMed ID: 8916316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera.
    Abe A; Takahashi N; Lee J; Oka T; Shizukuishi K; Kikuchi T; Inoue T; Jimbo M; Ryuo H; Bickel C
    Eur J Nucl Med Mol Imaging; 2003 Jun; 30(6):805-11. PubMed ID: 12677308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Thorium-227/Radium-223 Gamma-Camera Imaging During Radionuclide Therapy.
    Larsson E; Brolin G; Cleton A; Ohlsson T; Lindén O; Hindorf C
    Cancer Biother Radiopharm; 2020 Sep; 35(7):540-548. PubMed ID: 32486837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The experimental evaluation of a prototype rotating slat collimator for planar gamma camera imaging.
    Lodge MA; Binnie DM; Flower MA; Webb S
    Phys Med Biol; 1995 Mar; 40(3):427-48. PubMed ID: 7732072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.