These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2743672)

  • 1. The effect of silicon nitride ceramic on rabbit skeletal cells and tissue. An in vitro and in vivo investigation.
    Howlett CR; McCartney E; Ching W
    Clin Orthop Relat Res; 1989 Jul; (244):293-304. PubMed ID: 2743672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon nitride ceramic (Si3N4) on rabbit skeletal cells and tissue.
    Griss P
    Clin Orthop Relat Res; 1990 Jul; (256):306-8. PubMed ID: 2364617
    [No Abstract]   [Full Text] [Related]  

  • 3. Osteogenesis by canine and rabbit bone marrow in diffusion chambers.
    Johnson KA; Howlett CR; Bellenger CR; Armati-Gulson P
    Calcif Tissue Int; 1988 Feb; 42(2):113-8. PubMed ID: 3127025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue response around silicon nitride implants in rabbits.
    Guedes e Silva CC; König B; Carbonari MJ; Yoshimoto M; Allegrini S; Bressiani JC
    J Biomed Mater Res A; 2008 Feb; 84(2):337-43. PubMed ID: 17607762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.
    Neumann A; Unkel C; Werry C; Herborn CU; Maier HR; Ragoss C; Jahnke K
    Otolaryngol Head Neck Surg; 2006 Jun; 134(6):923-30. PubMed ID: 16730531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Osteosynthesis in facial bones: silicon nitride ceramic as material].
    Neumann A; Unkel C; Werry C; Herborn CU; Maier HR; Ragoss C; Jahnke K
    HNO; 2006 Dec; 54(12):937-42. PubMed ID: 16604328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osseous metaplasia with functioning bone marrow in hydroxyapatite orbital implants.
    Lew H; Shin DH; Lee SY; Kim SJ; Jang JW
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):366-8. PubMed ID: 10853938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenesis and leukopoiesis within diffusion-chamber implants of isolated bone marrow subpopulations.
    Budenz RW; Bernard GW
    Am J Anat; 1980 Dec; 159(4):455-74. PubMed ID: 7013464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of hydrofluoric acid-cleaned silicon nitride implants for periprosthetic infection eradication and bone regeneration enhancement.
    Zhou H; Yang S; Wei D; Liang C; Yang Q; Yang H; Wang D; Li M; Yang L
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112241. PubMed ID: 34225881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone tissue engineering seeded with bone marrow stromal cells].
    Guo Z; Dang G; Wang Z; Zhang H
    Zhonghua Wai Ke Za Zhi; 1999 Jul; 37(7):395-8. PubMed ID: 11829870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.
    Kühne JH; Bartl R; Frisch B; Hammer C; Jansson V; Zimmer M
    Acta Orthop Scand; 1994 Jun; 65(3):246-52. PubMed ID: 8042473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo.
    Ashton BA; Allen TD; Howlett CR; Eaglesom CC; Hattori A; Owen M
    Clin Orthop Relat Res; 1980 Sep; (151):294-307. PubMed ID: 7418319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Histomorphometry of silicon nitride composite endosteal implant in dogs].
    Ruan S; Li S; Shi S
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1999 Jul; 34(4):223-5. PubMed ID: 11776911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies.
    Nade S; Armstrong L; McCartney E; Baggaley B
    Clin Orthop Relat Res; 1983 Dec; (181):255-63. PubMed ID: 6315286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.
    Kai T; Shao-qing G; Geng-ting D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats.
    Pelissier P; Villars F; Mathoulin-Pelissier S; Bareille R; Lafage-Proust MH; Vilamitjana-Amedee J
    Plast Reconstr Surg; 2003 May; 111(6):1932-41. PubMed ID: 12711955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone ingrowth into porous silicon nitride.
    Anderson MC; Olsen R
    J Biomed Mater Res A; 2010 Mar; 92(4):1598-605. PubMed ID: 19437439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide) membrane. A pilot study.
    Meinig RP; Rahn B; Perren SM; Gogolewski S
    J Orthop Trauma; 1996; 10(3):178-90. PubMed ID: 8667110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.