These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dietary mechanism behind the costs associated with resistance to Bacillus thuringiensis in the cabbage looper, Trichoplusia ni. Shikano I; Cory JS PLoS One; 2014; 9(8):e105864. PubMed ID: 25171126 [TBL] [Abstract][Full Text] [Related]
4. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis). Martinez JC; Caprio MA; Friedenberg NA J Econ Entomol; 2018 Feb; 111(1):382-390. PubMed ID: 29281043 [TBL] [Abstract][Full Text] [Related]
5. Revisiting macronutrient regulation in the polyphagous herbivore Helicoverpa zea (Lepidoptera: Noctuidae): New insights via nutritional geometry. Deans CA; Sword GA; Behmer ST J Insect Physiol; 2015 Oct; 81():21-7. PubMed ID: 26141409 [TBL] [Abstract][Full Text] [Related]
6. Defining terms for proactive management of resistance to Bt crops and pesticides. Tabashnik BE; Mota-Sanchez D; Whalon ME; Hollingworth RM; Carrière Y J Econ Entomol; 2014 Apr; 107(2):496-507. PubMed ID: 24772527 [TBL] [Abstract][Full Text] [Related]
7. Quantity versus quality: Effects of diet protein-carbohydrate ratios and amounts on insect herbivore gene expression. Deans CA; Sword GA; Vogel H; Behmer ST Insect Biochem Mol Biol; 2022 Jun; 145():103773. PubMed ID: 35405259 [TBL] [Abstract][Full Text] [Related]
8. Current situation of pests targeted by Bt crops in Latin America. Blanco CA; Chiaravalle W; Dalla-Rizza M; Farias JR; García-Degano MF; Gastaminza G; Mota-Sánchez D; Murúa MG; Omoto C; Pieralisi BK; Rodríguez J; Rodríguez-Maciel JC; Terán-Santofimio H; Terán-Vargas AP; Valencia SJ; Willink E Curr Opin Insect Sci; 2016 Jun; 15():131-8. PubMed ID: 27436743 [TBL] [Abstract][Full Text] [Related]
9. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523 [TBL] [Abstract][Full Text] [Related]
10. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. Tabashnik BE; Wu K; Wu Y J Invertebr Pathol; 2012 Jul; 110(3):301-6. PubMed ID: 22537835 [TBL] [Abstract][Full Text] [Related]
12. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis. Coates BS Curr Opin Insect Sci; 2016 Jun; 15():70-7. PubMed ID: 27436734 [TBL] [Abstract][Full Text] [Related]
13. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. Herrero S; Bel Y; Hernández-Martínez P; Ferré J Curr Opin Insect Sci; 2016 Jun; 15():89-96. PubMed ID: 27436737 [TBL] [Abstract][Full Text] [Related]
14. Sustained susceptibility of pink bollworm to Bt cotton in the United States. Tabashnik BE; Morin S; Unnithan GC; Yelich AJ; Ellers-Kirk C; Harpold VS; Sisterson MS; Ellsworth PC; Dennehy TJ; Antilla L; Liesner L; Whitlow M; Staten RT; Fabrick JA; Li X; Carrière Y GM Crops Food; 2012; 3(3):194-200. PubMed ID: 22572905 [TBL] [Abstract][Full Text] [Related]
15. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Wang L; Ma Y; Wan P; Liu K; Xiao Y; Wang J; Cong S; Xu D; Wu K; Fabrick JA; Li X; Tabashnik BE Insect Biochem Mol Biol; 2018 Mar; 94():28-35. PubMed ID: 29408651 [TBL] [Abstract][Full Text] [Related]
16. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved. Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760 [TBL] [Abstract][Full Text] [Related]
17. The design and implementation of insect resistance management programs for Bt crops. Head GP; Greenplate J GM Crops Food; 2012; 3(3):144-53. PubMed ID: 22688689 [TBL] [Abstract][Full Text] [Related]
18. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides. Jakka SR; Knight VR; Jurat-Fuentes JL J Invertebr Pathol; 2014 Oct; 122():52-4. PubMed ID: 25218399 [TBL] [Abstract][Full Text] [Related]
19. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
20. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]