These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27436739)

  • 21. Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis.
    Dubovskiy IM; Grizanova EV; Whitten MM; Mukherjee K; Greig C; Alikina T; Kabilov M; Vilcinskas A; Glupov VV; Butt TM
    Virulence; 2016 Nov; 7(8):860-870. PubMed ID: 27029421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicity of Bacillus thuringiensis Strains to Six Lepidopteran Pests of Brazilian Agricultural Landscape.
    de Carvalho KS; Leite NA; Mendes SM; de Paula Lana UG; Valicente FH
    Neotrop Entomol; 2022 Dec; 51(6):869-876. PubMed ID: 36214967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world.
    de Maagd RA; Bravo A; Crickmore N
    Trends Genet; 2001 Apr; 17(4):193-9. PubMed ID: 11275324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA Interference-Mediated Knockdown of
    Yang L; Sun Y; Chang M; Zhang Y; Qiao H; Huang S; Kan Y; Yao L; Li D; Ayra-Pardo C
    Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae.
    Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB
    Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A promising HD133-like strain of Bacillus thuringiensis with dual efficiency to the two Lepidopteran pests: Spodoptera littoralis (Noctuidae) and Ephestia kuehniella (Pyralidae).
    BenFarhat-Touzri D; Driss F; Tounsi S
    Toxicon; 2016 Aug; 118():112-20. PubMed ID: 27130040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects.
    Estruch JJ; Warren GW; Mullins MA; Nye GJ; Craig JA; Koziel MG
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5389-94. PubMed ID: 8643585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective.
    Heckel DG
    Arch Insect Biochem Physiol; 2020 Jun; 104(2):e21673. PubMed ID: 32212396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of Resistance to Insecticidal Proteins from
    Jurat-Fuentes JL; Heckel DG; Ferré J
    Annu Rev Entomol; 2021 Jan; 66():121-140. PubMed ID: 33417820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of host resistance to insect pathogens.
    Cory JS
    Curr Opin Insect Sci; 2017 Jun; 21():54-59. PubMed ID: 28822489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of feeding cessation in Helicoverpa armigera larvae exposed to Bacillus thuringiensis Cry1Ac toxin.
    Li K; Yu S; Yang Y; He YZ; Wu Y
    Pestic Biochem Physiol; 2023 Sep; 195():105565. PubMed ID: 37666620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis.
    Dubois T; Faegri K; Perchat S; Lemy C; Buisson C; Nielsen-LeRoux C; Gohar M; Jacques P; Ramarao N; Kolstø AB; Lereclus D
    PLoS Pathog; 2012; 8(4):e1002629. PubMed ID: 22511867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field.
    Raymond B; Wyres KL; Sheppard SK; Ellis RJ; Bonsall MB
    PLoS Pathog; 2010 May; 6(5):e1000905. PubMed ID: 20502683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gut-specific arylphorin mediates midgut regenerative response against Cry-induced damage in Achaea janata.
    Dhania NK; Chauhan VK; Abhilash D; Thakur V; Chaitanya RK; Dutta-Gupta S; Dutta-Gupta A
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 255():110600. PubMed ID: 33848588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis.
    Dorsch JA; Candas M; Griko NB; Maaty WS; Midboe EG; Vadlamudi RK; Bulla LA
    Insect Biochem Mol Biol; 2002 Sep; 32(9):1025-36. PubMed ID: 12213239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner).
    Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K
    Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response.
    Li S; Xu X; De Mandal S; Shakeel M; Hua Y; Shoukat RF; Fu D; Jin F
    Environ Pollut; 2021 Feb; 271():116271. PubMed ID: 33401210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests.
    Chougule NP; Li H; Liu S; Linz LB; Narva KE; Meade T; Bonning BC
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8465-70. PubMed ID: 23650347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virulent and necrotrophic strategies of Bacillus thuringiensis in susceptible and resistant insects, Galleria mellonella.
    Grizanova EV; Krytsyna TI; Kalmykova GV; Sokolova E; Alikina T; Kabilov M; Coates CJ; Dubovskiy IM
    Microb Pathog; 2023 Feb; 175():105958. PubMed ID: 36572197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle,
    Lei X; Zhang F; Zhang J
    Microbiol Spectr; 2023 Mar; 11(2):e0504922. PubMed ID: 36976001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.