BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27436896)

  • 1. Transcriptional control of amino acid homeostasis is disrupted in Huntington's disease.
    Sbodio JI; Snyder SH; Paul BD
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8843-8. PubMed ID: 27436896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease.
    Sbodio JI; Snyder SH; Paul BD
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):780-785. PubMed ID: 29317536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease.
    Paul BD; Sbodio JI; Xu R; Vandiver MS; Cha JY; Snowman AM; Snyder SH
    Nature; 2014 May; 509(7498):96-100. PubMed ID: 24670645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine metabolism and hydrogen sulfide signaling in Huntington's disease.
    Paul BD
    Free Radic Biol Med; 2022 Jun; 186():93-98. PubMed ID: 35550919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: cross-talk between integrated stress response and thiol metabolism.
    Dickhout JG; Carlisle RE; Jerome DE; Mohammed-Ali Z; Jiang H; Yang G; Mani S; Garg SK; Banerjee R; Kaufman RJ; Maclean KN; Wang R; Austin RC
    J Biol Chem; 2012 Mar; 287(10):7603-14. PubMed ID: 22215680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cystamine increases L-cysteine levels in Huntington's disease transgenic mouse brain and in a PC12 model of polyglutamine aggregation.
    Fox JH; Barber DS; Singh B; Zucker B; Swindell MK; Norflus F; Buzescu R; Chopra R; Ferrante RJ; Kazantsev A; Hersch SM
    J Neurochem; 2004 Oct; 91(2):413-22. PubMed ID: 15447674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease.
    Ju TC; Chen HM; Chen YC; Chang CP; Chang C; Chern Y
    Biochim Biophys Acta; 2014 Sep; 1842(9):1668-80. PubMed ID: 24946181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model.
    van Hagen M; Piebes DGE; de Leeuw WC; Vuist IM; van Roon-Mom WMC; Moerland PD; Verschure PJ
    BMC Genomics; 2017 May; 18(1):373. PubMed ID: 28499347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of huntingtin in the adult mouse leads to progressive behavioral deficits, bilateral thalamic calcification, and altered brain iron homeostasis.
    Dietrich P; Johnson IM; Alli S; Dragatsis I
    PLoS Genet; 2017 Jul; 13(7):e1006846. PubMed ID: 28715425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant Huntingtin Derails Cysteine Metabolism in Huntington's Disease at Both Transcriptional and Post-Translational Levels.
    Paul BD; Sbodio JI; Snyder SH
    Antioxidants (Basel); 2022 Jul; 11(8):. PubMed ID: 36009188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications.
    Paul BD; Snyder SH
    Front Mol Neurosci; 2019; 12():68. PubMed ID: 30941013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effects of 3-alkyl luteolin derivatives are mediated by Nrf2 transcriptional activity and decreased oxidative stress in Huntington's disease mouse striatal cells.
    Oliveira AM; Cardoso SM; Ribeiro M; Seixas RS; Silva AM; Rego AC
    Neurochem Int; 2015 Dec; 91():1-12. PubMed ID: 26476055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model.
    Lu Z; Marks E; Chen J; Moline J; Barrows L; Raisbeck M; Volitakis I; Cherny RA; Chopra V; Bush AI; Hersch S; Fox JH
    Neurobiol Dis; 2014 Nov; 71():34-42. PubMed ID: 25014023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.
    Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM
    Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration.
    Weydt P; Pineda VV; Torrence AE; Libby RT; Satterfield TF; Lazarowski ER; Gilbert ML; Morton GJ; Bammler TK; Strand AD; Cui L; Beyer RP; Easley CN; Smith AC; Krainc D; Luquet S; Sweet IR; Schwartz MW; La Spada AR
    Cell Metab; 2006 Nov; 4(5):349-62. PubMed ID: 17055784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Cunha-Oliveira T; Ferreira IL; Oliveira CR; Rego AC
    Free Radic Biol Med; 2012 Nov; 53(10):1857-67. PubMed ID: 22982598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington's disease.
    Ribeiro FM; Devries RA; Hamilton A; Guimaraes IM; Cregan SP; Pires RG; Ferguson SS
    Hum Mol Genet; 2014 Apr; 23(8):2030-42. PubMed ID: 24282028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington's disease.
    Wright DJ; Renoir T; Smith ZM; Frazier AE; Francis PS; Thorburn DR; McGee SL; Hannan AJ; Gray LJ
    Transl Psychiatry; 2015 Jan; 5(1):e492. PubMed ID: 25562842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection by dietary restriction in the YAC128 mouse model of Huntington's disease: Relation to genes regulating histone acetylation and HTT.
    Moreno CL; Ehrlich ME; Mobbs CV
    Neurobiol Dis; 2016 Jan; 85():25-34. PubMed ID: 26485309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of copper ion mediated Huntington's disease progression.
    Fox JH; Kama JA; Lieberman G; Chopra R; Dorsey K; Chopra V; Volitakis I; Cherny RA; Bush AI; Hersch S
    PLoS One; 2007 Mar; 2(3):e334. PubMed ID: 17396163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.