These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27436968)

  • 1. The Hall-Petch effect as a manifestation of the general size effect.
    Li Y; Bushby AJ; Dunstan DJ
    Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20150890. PubMed ID: 27436968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hall-petch law revisited in terms of collective dislocation dynamics.
    Louchet F; Weiss J; Richeton T
    Phys Rev Lett; 2006 Aug; 97(7):075504. PubMed ID: 17026245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries.
    Wu S; Kou Z; Lai Q; Lan S; Katnagallu SS; Hahn H; Taheriniya S; Wilde G; Gleiter H; Feng T
    Nat Commun; 2022 Sep; 13(1):5468. PubMed ID: 36115860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical strength enhancement by grain size reduction in a soft colloidal polycrystal.
    Mourchid A; Boucenna I; Carn F
    Soft Matter; 2021 Dec; 17(48):10910-10917. PubMed ID: 34811558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yielding transitions and grain-size effects in dislocation theory.
    Langer JS
    Phys Rev E; 2017 Mar; 95(3-1):033004. PubMed ID: 28415175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo Hall-Petch strength reduction in polycrystalline graphene.
    Song Z; Artyukhov VI; Yakobson BI; Xu Z
    Nano Lett; 2013 Apr; 13(4):1829-33. PubMed ID: 23528068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model.
    Amin W; Ali MA; Vajragupta N; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yield stress of duplex stainless steel specimens estimated using a compound Hall-Petch equation.
    Hirota N; Yin F; Azuma T; Inoue T
    Sci Technol Adv Mater; 2010 Apr; 11(2):025004. PubMed ID: 27877332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters.
    Shi J; Wang Y; Yang X
    Nanoscale Res Lett; 2013 Nov; 8(1):500. PubMed ID: 24267785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse pseudo Hall-Petch relation in polycrystalline graphene.
    Sha ZD; Quek SS; Pei QX; Liu ZS; Wang TJ; Shenoy VB; Zhang YW
    Sci Rep; 2014 Aug; 4():5991. PubMed ID: 25103818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study on the Hall-Petch Relationship and Grain Growth Kinetics in FCC-Structured High/Medium Entropy Alloys.
    Huang YC; Su CH; Wu SK; Lin C
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the dependence of strength on grain sizes in nanocrystalline materials.
    He W; Bhole SD; Chen D
    Sci Technol Adv Mater; 2008 Jan; 9(1):015003. PubMed ID: 27877940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys.
    Jones MR; Nation BL; Wellington-Johnson JA; Curry JF; Kustas AB; Lu P; Chandross M; Argibay N
    Sci Rep; 2020 Jun; 10(1):10151. PubMed ID: 32576865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide.
    Li S; Zhang J; Guan S; Guo R; He D
    Nanoscale; 2023 Apr; 15(16):7517-7525. PubMed ID: 37022013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of grain size and temperature on mechanical properties of CoCrNi medium-entropy alloy.
    Zhang C; Han B; Shi M
    J Mol Model; 2023 Mar; 29(4):104. PubMed ID: 36947246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing nanomaterials with desired mechanical properties by constraining the evolution of their grain shapes.
    Tengen TB
    Nanoscale Res Lett; 2011 Nov; 6(1):585. PubMed ID: 22067060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.