These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27436971)

  • 1. Formation mechanism of a basin of attraction for passive dynamic walking induced by intrinsic hyperbolicity.
    Obayashi I; Aoi S; Tsuchiya K; Kokubu H
    Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20160028. PubMed ID: 27436971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal mechanism of basin of attraction in passive dynamic walking.
    Okamoto K; Aoi S; Obayashi I; Kokubu H; Senda K; Tsuchiya K
    Bioinspir Biomim; 2020 Jul; 15(5):055002. PubMed ID: 32396880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-level regulation enhances global stability of the simplest dynamic walker.
    Patil NS; Dingwell JB; Cusumano JP
    J R Soc Interface; 2020 Jul; 17(168):20200278. PubMed ID: 32674710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Logarithmic correction to the probability of capture for dissipatively perturbed Hamiltonian systems.
    Haberman R; Ho EK
    Chaos; 1995 Jun; 5(2):374-384. PubMed ID: 12780191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All common bipedal gaits emerge from a single passive model.
    Gan Z; Yesilevskiy Y; Zaytsev P; Remy CD
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gentlest Ascent Dynamics on Manifolds Defined by Adaptively Sampled Point-Clouds.
    Bello-Rivas JM; Georgiou A; Vandecasteele H; Kevrekidis IG
    J Phys Chem B; 2023 Jun; 127(23):5178-5189. PubMed ID: 37279339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New bifurcations in the simplest passive walking model.
    Li Q; Tang S; Yang XS
    Chaos; 2013 Dec; 23(4):043110. PubMed ID: 24387549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral temporal control determines mediolateral margins of stability in symmetric and asymmetric human walking.
    Buurke TJW; Lamoth CJC; van der Woude LHV; Hof AL; den Otter R
    Sci Rep; 2019 Aug; 9(1):12494. PubMed ID: 31467362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft tissue vibration: a biologically-inspired mechanism for stabilizing bipedal locomotion.
    Masters SE; Challis JH
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33352541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive dynamic walking robot that has a deterministic nonlinear gait.
    Kurz MJ; Judkins TN; Arellano C; Scott-Pandorf M
    J Biomech; 2008; 41(6):1310-6. PubMed ID: 18359030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic stability of passive dynamic walking on an irregular surface.
    Su JL; Dingwell JB
    J Biomech Eng; 2007 Dec; 129(6):802-10. PubMed ID: 18067383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic basins of attraction for metastable states.
    Serdukova L; Zheng Y; Duan J; Kurths J
    Chaos; 2016 Jul; 26(7):073117. PubMed ID: 27475077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence and local stability of multiple equilibria in neural networks with piecewise linear nondecreasing activation functions.
    Wang L; Lu W; Chen T
    Neural Netw; 2010 Mar; 23(2):189-200. PubMed ID: 19959326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passivity-Based Control with a Generalized Energy Storage Function for Robust Walking of Biped Robots.
    Yeatman MR; Lv G; Gregg RD
    Proc Am Control Conf; 2018 Jun; 2018():2958-2963. PubMed ID: 30220783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible functional roles of phase resetting during walking.
    Yamasaki T; Nomura T; Sato S
    Biol Cybern; 2003 Jun; 88(6):468-96. PubMed ID: 12789495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covariant Lyapunov analysis of chaotic Kolmogorov flows.
    Inubushi M; Kobayashi MU; Takehiro S; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016331. PubMed ID: 22400681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Existence and stability of limit cycles in the model of a planar passive biped walking down a slope.
    Makarenkov O
    Proc Math Phys Eng Sci; 2020 Jan; 476(2233):20190450. PubMed ID: 32082054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.