BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 27437640)

  • 1. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.
    Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.
    Xu C; Silder A; Zhang J; Reifman J; Unnikrishnan G
    BMC Musculoskelet Disord; 2017 Mar; 18(1):125. PubMed ID: 28330449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual Differences in Women During Walking Affect Tibial Response to Load Carriage: The Importance of Individualized Musculoskeletal Finite-Element Models.
    Xu C; Reifman J; Baggaley M; Edwards WB; Unnikrishnan G
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):545-555. PubMed ID: 31150325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion.
    Al Nazer R; Klodowski A; Rantalainen T; Heinonen A; Sievänen H; Mikkola A
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):573-9. PubMed ID: 21302163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage.
    Silder A; Delp SL; Besier T
    J Biomech; 2013 Sep; 46(14):2522-8. PubMed ID: 23968555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationships between multiaxial loading history and tibial strains during load carriage.
    Hughes JM; Dickin DC; Wang H
    J Sci Med Sport; 2019 Jan; 22(1):48-53. PubMed ID: 29884594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of compressive follower load on spine in a simplified dynamic state: a simulation study.
    Kim BS; Lim TH; Kwon TK; Han KS
    Biomed Mater Eng; 2014; 24(6):2319-29. PubMed ID: 25226932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.
    Giarmatzis G; Jonkers I; Wesseling M; Van Rossom S; Verschueren S
    J Bone Miner Res; 2015 Aug; 30(8):1431-40. PubMed ID: 25704538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM; Stylianou AP; Kia M
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage Strain Distributions Are Different Under the Same Load in the Central and Peripheral Tibial Plateau Regions.
    Briant P; Bevill S; Andriacchi T
    J Biomech Eng; 2015 Dec; 137(12):121009. PubMed ID: 26501505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships.
    Tuncer M; Hansen UN; Amis AA
    Med Eng Phys; 2014 Aug; 36(8):991-7; discussion 991. PubMed ID: 24907128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.
    Wang H; Frame J; Ozimek E; Leib D; Dugan EL
    Res Q Exerc Sport; 2013 Sep; 84(3):305-12. PubMed ID: 24261009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach.
    Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X
    PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.