These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 27437691)

  • 1. Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques.
    Jørgensen IL; Kemmer GC; Pomorski TG
    Eur Biophys J; 2017 Mar; 46(2):103-119. PubMed ID: 27437691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model membrane platforms to study protein-membrane interactions.
    Sezgin E; Schwille P
    Mol Membr Biol; 2012 Aug; 29(5):144-54. PubMed ID: 22831167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durable vesicles for reconstitution of membrane proteins in biotechnology.
    Beales PA; Khan S; Muench SP; Jeuken LJ
    Biochem Soc Trans; 2017 Feb; 45(1):15-26. PubMed ID: 28202656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion.
    Biner O; Schick T; Müller Y; von Ballmoos C
    FEBS Lett; 2016 Jul; 590(14):2051-62. PubMed ID: 27264202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion.
    Kahya N; Pécheur EI; de Boeij WP; Wiersma DA; Hoekstra D
    Biophys J; 2001 Sep; 81(3):1464-74. PubMed ID: 11509360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein and protein-lipid interactions in domain-assembly: lessons from giant unilamellar vesicles.
    Kahya N
    Biochim Biophys Acta; 2010 Jul; 1798(7):1392-8. PubMed ID: 20211599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forming giant vesicles with controlled membrane composition, asymmetry, and contents.
    Richmond DL; Schmid EM; Martens S; Stachowiak JC; Liska N; Fletcher DA
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9431-6. PubMed ID: 21593410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of proteins on electroformed giant unilamellar vesicles.
    Schmid EM; Richmond DL; Fletcher DA
    Methods Cell Biol; 2015; 128():319-38. PubMed ID: 25997355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.
    Uda RM; Yoshikawa Y; Kitaba M; Nishimoto N
    Colloids Surf B Biointerfaces; 2018 Jul; 167():544-549. PubMed ID: 29730576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles.
    Varnier A; Kermarrec F; Blesneac I; Moreau C; Liguori L; Lenormand JL; Picollet-D'hahan N
    J Membr Biol; 2010 Feb; 233(1-3):85-92. PubMed ID: 20135103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
    Prévost C; Tsai FC; Bassereau P; Simunovic M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles.
    Merkle D; Kahya N; Schwille P
    Chembiochem; 2008 Nov; 9(16):2673-81. PubMed ID: 18830993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane proteins, lipids and detergents: not just a soap opera.
    Seddon AM; Curnow P; Booth PJ
    Biochim Biophys Acta; 2004 Nov; 1666(1-2):105-17. PubMed ID: 15519311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-Mediated Liposome Fusion to Engineer Giant Lipid Vesicles with Cytosolic Proteins and Reconstituted Mammalian Proteins.
    Schmid YRF; Scheller L; Buchmann S; Dittrich PS
    Adv Biosyst; 2020 Nov; 4(11):e2000153. PubMed ID: 33084207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed tubule growth from giant unilamellar vesicles in a thermal gradient.
    Talbot EL; Kotar J; Di Michele L; Cicuta P
    Soft Matter; 2019 Feb; 15(7):1676-1683. PubMed ID: 30681117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making giant unilamellar vesicles via hydration of a lipid film.
    Manley S; Gordon VD
    Curr Protoc Cell Biol; 2008 Sep; Chapter 24():Unit 24.3. PubMed ID: 18819090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA.
    Yanagisawa M; Iwamoto M; Kato A; Yoshikawa K; Oiki S
    J Am Chem Soc; 2011 Aug; 133(30):11774-9. PubMed ID: 21702488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on the formation of liquid phase-separating giant unilamellar vesicles (GUV).
    Betaneli V; Worch R; Schwille P
    Chem Phys Lipids; 2012 Sep; 165(6):630-7. PubMed ID: 22750641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips.
    Li W; Wang Q; Yang Z; Wang W; Cao Y; Hu N; Luo H; Liao Y; Yang J
    Colloids Surf B Biointerfaces; 2016 Apr; 140():560-566. PubMed ID: 26628330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.