BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27438146)

  • 21. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SL-BioDP: Multi-Cancer Interactive Tool for Prediction of Synthetic Lethality and Response to Cancer Treatment.
    Deng X; Das S; Valdez K; Camphausen K; Shankavaram U
    Cancers (Basel); 2019 Oct; 11(11):. PubMed ID: 31671773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human synthetic lethal inference as potential anti-cancer target gene detection.
    Conde-Pueyo N; Munteanu A; Solé RV; Rodríguez-Caso C
    BMC Syst Biol; 2009 Dec; 3():116. PubMed ID: 20015360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic Lethal Drug Combinations Targeting Proteasome and Histone Deacetylase Inhibitors in TP53-Mutated Cancers.
    Das S; Deng X; Camphausen K; Shankavaram U
    Arch Cancer Biol Ther; 2020; 1(2):42-47. PubMed ID: 33163985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs.
    Wappett M; Dulak A; Yang ZR; Al-Watban A; Bradford JR; Dry JR
    BMC Genomics; 2016 Jan; 17():65. PubMed ID: 26781748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Syn-lethality: an integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies.
    Li XJ; Mishra SK; Wu M; Zhang F; Zheng J
    Biomed Res Int; 2014; 2014():196034. PubMed ID: 24864230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality.
    Jerby-Arnon L; Pfetzer N; Waldman YY; McGarry L; James D; Shanks E; Seashore-Ludlow B; Weinstock A; Geiger T; Clemons PA; Gottlieb E; Ruppin E
    Cell; 2014 Aug; 158(5):1199-1209. PubMed ID: 25171417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SLKB: synthetic lethality knowledge base.
    Gökbağ B; Tang S; Fan K; Cheng L; Yu L; Zhao Y; Li L
    Nucleic Acids Res; 2024 Jan; 52(D1):D1418-D1428. PubMed ID: 37889037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status.
    Ohnishi K; Scuric Z; Schiestl RH; Okamoto N; Takahashi A; Ohnishi T
    Radiat Res; 2006 Sep; 166(3):454-62. PubMed ID: 16972754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathway-driven analysis of synthetic lethal interactions in cancer using perturbation screens.
    Karimpour M; Totonchi M; Behmanesh M; Montazeri H
    Life Sci Alliance; 2024 Jan; 7(1):. PubMed ID: 37863651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic Lethality Screening with Recursive Feature Machines.
    Cai C; Radhakrishnan A; Uhler C
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BiNGS!SL-seq: a bioinformatics pipeline for the analysis and interpretation of deep sequencing genome-wide synthetic lethal screen.
    Kim J; Tan AC
    Methods Mol Biol; 2012; 802():389-98. PubMed ID: 22130895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High throughput RNAi screening identifies ID1 as a synthetic sick/lethal gene interacting with the common TP53 mutation R175H.
    Imai H; Kato S; Sakamoto Y; Kakudo Y; Shimodaira H; Ishioka C
    Oncol Rep; 2014 Mar; 31(3):1043-50. PubMed ID: 24378760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer.
    Miyasaka A; Oda K; Ikeda Y; Sone K; Fukuda T; Inaba K; Makii C; Enomoto A; Hosoya N; Tanikawa M; Uehara Y; Arimoto T; Kuramoto H; Wada-Hiraike O; Miyagawa K; Yano T; Kawana K; Osuga Y; Fujii T
    Gynecol Oncol; 2015 Jul; 138(1):174-80. PubMed ID: 25913131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A kinome siRNA screen identifies HGS as a potential target for liver cancers with oncogenic mutations in CTNNB1.
    Canal F; Anthony E; Lescure A; Del Nery E; Camonis J; Perez F; Ragazzon B; Perret C
    BMC Cancer; 2015 Dec; 15():1020. PubMed ID: 26715116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of synthetic lethal pairs in biological systems through network information centrality.
    Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2013 Aug; 9(8):2163-7. PubMed ID: 23728082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-omics characterization of synthetic lethality-related molecular features: implications for SL-based therapeutic target screening.
    Weng S; Ruan H
    FEBS J; 2023 Mar; 290(6):1477-1480. PubMed ID: 36461713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.