These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 27438254)
1. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process. Pueyo N; Miguel N; Ovelleiro JL; Ormad MP Water Sci Technol; 2016; 74(2):482-90. PubMed ID: 27438254 [TBL] [Abstract][Full Text] [Related]
2. Comparison of ozone-based AOPs on the removal of organic matter from the secondary biochemical effluent of coking wastewater. Ji Y; Wang C; He L; Chen X; Wang J; Zhang X; Du Q Environ Technol; 2024 Apr; 45(10):1943-1955. PubMed ID: 36511617 [TBL] [Abstract][Full Text] [Related]
3. Combination of Coagulation and Ozone Catalytic Oxidation for Pretreating Coking Wastewater. Chen L; Xu Y; Sun Y Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31096662 [TBL] [Abstract][Full Text] [Related]
4. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O Yao W; Ur Rehman SW; Wang H; Yang H; Yu G; Wang Y Water Res; 2018 Jul; 138():106-117. PubMed ID: 29574198 [TBL] [Abstract][Full Text] [Related]
5. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse. Souza BM; Souza BS; Guimarães TM; Ribeiro TF; Cerqueira AC; Sant'Anna GL; Dezotti M Environ Sci Pollut Res Int; 2016 Nov; 23(22):22947-22956. PubMed ID: 27578092 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of the presence of suspended and dissolved matter on the removal of cyanide from coking wastewater by TiO Pueyo N; Miguel N; Mosteo R; Ovelleiro JL; Ormad MP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(2):182-188. PubMed ID: 27791477 [TBL] [Abstract][Full Text] [Related]
7. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O Xiong Z; Cao J; Yang D; Lai B; Yang P Chemosphere; 2017 Jan; 166():343-351. PubMed ID: 27700998 [TBL] [Abstract][Full Text] [Related]
8. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process. Zhao X; Wang H; Chen F; Mao R; Liu H; Qu J Water Sci Technol; 2013; 68(6):1329-35. PubMed ID: 24056431 [TBL] [Abstract][Full Text] [Related]
9. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes. García-Morales MA; Roa-Morales G; Barrera-Díaz C; Balderas-Hernández P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(1):22-30. PubMed ID: 22217079 [TBL] [Abstract][Full Text] [Related]
10. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation. Lee Y; Gerrity D; Lee M; Gamage S; Pisarenko A; Trenholm RA; Canonica S; Snyder SA; von Gunten U Environ Sci Technol; 2016 Apr; 50(7):3809-19. PubMed ID: 26909504 [TBL] [Abstract][Full Text] [Related]
11. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Lee Y; Kovalova L; McArdell CS; von Gunten U Water Res; 2014 Nov; 64():134-148. PubMed ID: 25046377 [TBL] [Abstract][Full Text] [Related]
12. Degradation of cyanide, aniline and phenol in pre-treated coke oven wastewater by peroxide assisted electro-oxidation process. Singh H; Mishra BK Water Sci Technol; 2018 Dec; 78(10):2214-2227. PubMed ID: 30629549 [TBL] [Abstract][Full Text] [Related]
13. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode. Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356 [TBL] [Abstract][Full Text] [Related]
14. Pulsed corona discharge for improving treatability of coking wastewater. Liu M; Preis S; Kornev I; Hu Y; Wei CH J Environ Sci (China); 2018 Feb; 64():306-316. PubMed ID: 29478652 [TBL] [Abstract][Full Text] [Related]
16. Optimization of ozonation and peroxone process for simultaneous control of micropollutants and bromate in wastewater. Phattarapattamawong S; Kaiser AM; Saracevic E; Schaar HP; Krampe J Water Sci Technol; 2018 May; 2017(2):404-411. PubMed ID: 29851392 [TBL] [Abstract][Full Text] [Related]
17. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. Zayas Pérez T; Geissler G; Hernandez F J Environ Sci (China); 2007; 19(3):300-5. PubMed ID: 17918591 [TBL] [Abstract][Full Text] [Related]
18. Degradation of nitrobenzene wastewater in an acidic environment by Ti(IV)/H Yang P; Luo S; Liu Y; Jiao W Environ Sci Pollut Res Int; 2018 Sep; 25(25):25060-25070. PubMed ID: 29936612 [TBL] [Abstract][Full Text] [Related]
19. Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulation-flocculation processes. Meriç S; Selçuk H; Belgiorno V Water Res; 2005 Mar; 39(6):1147-53. PubMed ID: 15766969 [TBL] [Abstract][Full Text] [Related]
20. [Comparative study on O3/H2O2 and O3/Mn processes for removal of refractory organics in water]. Shi FH; Ma J Huan Jing Ke Xue; 2004 Jan; 25(1):72-7. PubMed ID: 15330425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]