BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27438433)

  • 1. Aggregation-Induced Resonance Raman Optical Activity (AIRROA) and Time-Dependent Helicity Switching of Astaxanthin Supramolecular Assemblies.
    Dudek M; Zajac G; Kaczor A; Baranska M
    J Phys Chem B; 2016 Aug; 120(32):7807-14. PubMed ID: 27438433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement.
    Zajac G; Kaczor A; Pallares Zazo A; Mlynarski J; Dudek M; Baranska M
    J Phys Chem B; 2016 May; 120(17):4028-33. PubMed ID: 27057926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation-Induced Resonance Raman Optical Activity (AIRROA) and Time-Dependent Helicity Switching of Astaxanthin Supramolecular Assemblies.
    Dudek M; Zajac G; Kaczor A; Baranska M
    J Phys Chem B; 2016 Oct; 120(41):10869-10870. PubMed ID: 27731645
    [No Abstract]   [Full Text] [Related]  

  • 4. Pre-resonance enhancement of exceptional intensity in Aggregation-Induced Raman Optical Activity (AIROA) spectra of lutein derivatives.
    Zajac G; Lasota J; Dudek M; Kaczor A; Baranska M
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():356-360. PubMed ID: 27685004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s.
    Palomo L; Rodríguez R; Medina S; Quiñoá E; Casado J; Freire F; Ramírez FJ
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9080-9087. PubMed ID: 32125060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of ROA and ECD Related to Conformational Changes of Astaxanthin Enantiomers.
    Zajac G; Kaczor A; Buda S; Młynarski J; Frelek J; Dobrowolski JC; Baranska M
    J Phys Chem B; 2015 Sep; 119(37):12193-201. PubMed ID: 26305416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of supramolecular astaxanthin aggregates revealed by molecular dynamics and electronic circular dichroism spectroscopy.
    Zajac G; Machalska E; Kaczor A; Kessler J; Bouř P; Baranska M
    Phys Chem Chem Phys; 2018 Jul; 20(26):18038-18046. PubMed ID: 29932184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of chirality induced by molecular aggregation and self-assembly.
    Mu X; Wang J; Duan G; Li Z; Wen J; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():188-198. PubMed ID: 30639912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Properties of 3d and 4f Coordination Compounds Deciphered by Raman Optical Activity Spectroscopy.
    Wu T; Pelc R; Bouř P
    Chempluschem; 2023 Sep; 88(9):e202300385. PubMed ID: 37665573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions.
    Haraguchi S; Hara M; Shingae T; Kumauchi M; Hoff WD; Unno M
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11555-8. PubMed ID: 26216505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of experimental and calculated chiroptical spectra for chiral molecular structure determination.
    Polavarapu PL; Covington CL
    Chirality; 2014 Sep; 26(9):539-52. PubMed ID: 24644231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On Raman optical activity sign-switching between the ground and excited states leading to an unusual resonance ROA induced chirality.
    Machalska E; Zajac G; Baranska M; Kaczorek D; Kawęcki R; Lipiński PFJ; Rode JE; Dobrowolski JC
    Chem Sci; 2020 Nov; 12(3):911-916. PubMed ID: 34163857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457 nm for the Characterization of Chiral Molecules.
    Zhang Y; Wang P; Jia G; Cheng F; Feng Z; Li C
    Appl Spectrosc; 2017 Sep; 71(9):2211-2217. PubMed ID: 28574281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the Raman optical activity spectra of
    Abella L; Ludowieg HD; Autschbach J
    Chirality; 2020 Jun; 32(6):741-752. PubMed ID: 32166815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced Chirality in Canthaxanthin Aggregates Reveals Multiple Levels of Supramolecular Organization.
    Halat M; Zając G; Andrushchenko V; Bouř P; Baranski R; Pajor K; Baranska M
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202402449. PubMed ID: 38517385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the electronic and vibrational optical activity of a europium(III) complex.
    Wu T; Hudecová J; You XZ; Urbanová M; Bouř P
    Chemistry; 2015 Apr; 21(15):5807-13. PubMed ID: 25736965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of the True and False Resonance Raman Optical Activity.
    Machalska E; Zajac G; Wierzba AJ; Kapitán J; Andruniów T; Spiegel M; Gryko D; Bouř P; Baranska M
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21205-21210. PubMed ID: 34216087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman Optical Activity Spectroscopy in Probing Structural Changes Invisible to Circular Dichroism Spectroscopy: A Study on Truncated Vitamin B
    Machalska E; Zajac G; Halat M; Wierzba AJ; Gryko D; Baranska M
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32987678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy.
    Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K
    J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA).
    Synytsya A; Judexová M; Hrubý T; Tatarkovič M; Miškovičová M; Petruželka L; Setnička V
    Anal Bioanal Chem; 2013 Jun; 405(16):5441-53. PubMed ID: 23657444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.