BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 27438595)

  • 1. Drug search for leishmaniasis: a virtual screening approach by grid computing.
    Ochoa R; Watowich SJ; Flórez A; Mesa CV; Robledo SM; Muskus C
    J Comput Aided Mol Des; 2016 Jul; 30(7):541-52. PubMed ID: 27438595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auranofin is an apoptosis-simulating agent with in vitro and in vivo anti-leishmanial activity.
    Sharlow ER; Leimgruber S; Murray S; Lira A; Sciotti RJ; Hickman M; Hudson T; Leed S; Caridha D; Barrios AM; Close D; Grögl M; Lazo JS
    ACS Chem Biol; 2014 Mar; 9(3):663-72. PubMed ID: 24328400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational and Investigative Study of Flavonoids Active Against Typanosoma cruzi and Leishmania spp.
    Ribeiro FF; Junior FJ; da Silva MS; Scotti MT; Scotti L
    Nat Prod Commun; 2015 Jun; 10(6):917-20. PubMed ID: 26197515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations.
    Bustamante C; Ochoa R; Asela C; Muskus C
    J Comput Aided Mol Des; 2019 Sep; 33(9):845-854. PubMed ID: 31612362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leishmaniasis drug discovery: recent progress and challenges in assay development.
    Zulfiqar B; Shelper TB; Avery VM
    Drug Discov Today; 2017 Oct; 22(10):1516-1531. PubMed ID: 28647378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach.
    Pandey RK; Sharma D; Bhatt TK; Sundar S; Prajapati VK
    J Biomol Struct Dyn; 2015; 33(12):2541-53. PubMed ID: 26305585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments.
    Silva LA; Vinaud MC; Castro AM; Cravo PV; Bezerra JC
    Biomed Res Int; 2015; 2015():965725. PubMed ID: 25918726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topoisomerase 1B as a target against leishmaniasis.
    D'Annessa I; Castelli S; Desideri A
    Mini Rev Med Chem; 2015; 15(3):203-10. PubMed ID: 25769969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the dual inhibition strategy for checking Leishmaniasis.
    Grover A; Katiyar SP; Jeyakanthan J; Dubey VK; Sundar D
    J Biomol Struct Dyn; 2012; 30(4):474-87. PubMed ID: 22694167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach.
    Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK
    Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of a pyridine-2-thiol N-oxide gold(I) complex with potent antiproliferative effect against Trypanosoma cruzi and Leishmania sp. insight into its mechanism of action.
    Vieites M; Smircich P; Guggeri L; Marchán E; Gómez-Barrio A; Navarro M; Garat B; Gambino D
    J Inorg Biochem; 2009 Oct; 103(10):1300-6. PubMed ID: 19361864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis.
    Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K
    Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery.
    das Neves GM; Kagami LP; Gonçalves IL; Eifler-Lima VL
    Future Med Chem; 2019 Aug; 11(16):2107-2130. PubMed ID: 31370699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of heparan sulfate in host macrophage infection by
    Maciej-Hulme ML; Skidmore MA; Price HP
    Biochem Soc Trans; 2018 Aug; 46(4):789-796. PubMed ID: 29934302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico work flow for scaffold hopping in Leishmania.
    Waugh B; Ghosh A; Bhattacharyya D; Ghoshal N; Banerjee R
    BMC Res Notes; 2014 Nov; 7():802. PubMed ID: 25399834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of dihydroorotate dehydrogenase from Leishmania major.
    Cordeiro AT; Feliciano PR; Pinheiro MP; Nonato MC
    Biochimie; 2012 Aug; 94(8):1739-48. PubMed ID: 22542640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease inhibitors in potential drug development for Leishmaniasis.
    Das P; Alam MN; Paik D; Karmakar K; De T; Chakraborti T
    Indian J Biochem Biophys; 2013 Oct; 50(5):363-76. PubMed ID: 24772958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis.
    Goyal S; Grover S; Dhanjal JK; Goyal M; Tyagi C; Chacko S; Grover A
    J Mol Model; 2014 Mar; 20(3):2099. PubMed ID: 24567150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents.
    Venkatesan SK; Saudagar P; Shukla AK; Dubey VK
    Interdiscip Sci; 2011 Sep; 3(3):217-31. PubMed ID: 21956744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual screening to identify Leishmania braziliensis N-myristoyltransferase inhibitors: pharmacophore models, docking, and molecular dynamics.
    de Carvalho Gallo JC; de Mattos Oliveira L; Araújo JSC; Santana IB; Dos Santos Junior MC
    J Mol Model; 2018 Aug; 24(9):260. PubMed ID: 30159742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.