BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1314 related articles for article (PubMed ID: 27438869)

  • 1. Development of the Word Auditory Recognition and Recall Measure: A Working Memory Test for Use in Rehabilitative Audiology.
    Smith SL; Pichora-Fuller MK; Alexander G
    Ear Hear; 2016; 37(6):e360-e376. PubMed ID: 27438869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Word-Recognition Performances on the Auditec and VA Recorded Versions of Northwestern University Auditory Test No. 6 by Young Listeners with Normal Hearing and by Older Listeners with Sensorineural Hearing Loss Using a Randomized Presentation-Level Paradigm.
    Wilson RH
    J Am Acad Audiol; 2019 May; 30(5):370-395. PubMed ID: 30969910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Abbreviated Versions of the Word Auditory Recognition and Recall Measure.
    Smith SL; Ryan DB; Pichora-Fuller MK
    Ear Hear; 2020; 41(6):1483-1491. PubMed ID: 33136625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.
    Gordon-Salant S; Cole SS
    Ear Hear; 2016; 37(5):593-602. PubMed ID: 27232071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of two word-recognition tasks in multitalker babble: Speech Recognition in Noise Test (SPRINT) and Words-in-Noise Test (WIN).
    Wilson RH; Cates WB
    J Am Acad Audiol; 2008; 19(7):548-56. PubMed ID: 19248731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Carrier Phrase on Word Recognition Performances by Younger and Older Listeners Using Two Stimulus Paradigms.
    Wilson RH; Sanchez VA
    J Am Acad Audiol; 2020 Jun; 31(6):412-441. PubMed ID: 31968207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Words-in-Noise Test (WIN), list 3: a practice list.
    Wilson RH; Watts KL
    J Am Acad Audiol; 2012 Feb; 23(2):92-6. PubMed ID: 22353677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations Between Auditory Working Memory, Self-Perceived Listening Effort, and Hearing Difficulty in Adults With Mild Traumatic Brain Injury.
    Lander DM; Liu S; Roup CM
    Ear Hear; 2024 May-Jun 01; 45(3):695-709. PubMed ID: 38229218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligibility of emotional speech in younger and older adults.
    Dupuis K; Pichora-Fuller MK
    Ear Hear; 2014; 35(6):695-707. PubMed ID: 25127327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory Environments and Hearing Aid Feature Activation Among Younger and Older Listeners in an Urban and Rural Area.
    Jorgensen E; Xu J; Chipara O; Oleson J; Galster J; Wu YH
    Ear Hear; 2023 May-Jun 01; 44(3):603-618. PubMed ID: 36534639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical experience with the words-in-noise test on 3430 veterans: comparisons with pure-tone thresholds and word recognition in quiet.
    Wilson RH
    J Am Acad Audiol; 2011; 22(7):405-23. PubMed ID: 21993048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech Perception in Noise and Listening Effort of Older Adults With Nonlinear Frequency Compression Hearing Aids.
    Shehorn J; Marrone N; Muller T
    Ear Hear; 2018; 39(2):215-225. PubMed ID: 28806193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrupted Monosyllabic Words: The Effects of Ten Interruption Locations on Recognition Performance by Older Listeners with Sensorineural Hearing Loss.
    Wilson RH; Sharrett KC
    J Am Acad Audiol; 2017 Jan; 28(1):68-79. PubMed ID: 28054913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition performance on words interrupted (10 ips, 50% duty cycle) with two interruption patterns referenced to word onset: Young listeners with normal hearing for pure tones and older listeners with sensorineural hearing loss.
    Wilson RH; Irish SE
    Int J Audiol; 2015; 54(12):933-41. PubMed ID: 26252182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How hearing aids, background noise, and visual cues influence objective listening effort.
    Picou EM; Ricketts TA; Hornsby BW
    Ear Hear; 2013 Sep; 34(5):e52-64. PubMed ID: 23416751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of high frequencies to speech recognition in quiet and noise in listeners with varying degrees of high-frequency sensorineural hearing loss.
    Amos NE; Humes LE
    J Speech Lang Hear Res; 2007 Aug; 50(4):819-34. PubMed ID: 17675588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech-in-speech listening on the LiSN-S test by older adults with good audiograms depends on cognition and hearing acuity at high frequencies.
    Besser J; Festen JM; Goverts ST; Kramer SE; Pichora-Fuller MK
    Ear Hear; 2015 Jan; 36(1):24-41. PubMed ID: 25207850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do hearing loss and cognitive function modulate benefit from different binaural noise-reduction settings?
    Neher T; Grimm G; Hohmann V; Kollmeier B
    Ear Hear; 2014; 35(3):e52-62. PubMed ID: 24351610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selected cognitive factors and speech recognition performance among young and elderly listeners.
    Gordon-Salant S; Fitzgibbons PJ
    J Speech Lang Hear Res; 1997 Apr; 40(2):423-31. PubMed ID: 9130210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.