These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 27439971)
1. Assessment of the in vitro dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model. Miyani VA; Hughes MF Cutan Ocul Toxicol; 2017 Jun; 36(2):145-151. PubMed ID: 27439971 [TBL] [Abstract][Full Text] [Related]
2. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Park YH; Jeong SH; Yi SM; Choi BH; Kim YR; Kim IK; Kim MK; Son SW Toxicol In Vitro; 2011 Dec; 25(8):1863-9. PubMed ID: 21664450 [TBL] [Abstract][Full Text] [Related]
3. Establishment and evaluation of immortalized human epidermal keratinocytes for an alternative skin irritation test. Kim CW; Kim CD; Choi KC J Pharmacol Toxicol Methods; 2017; 88(Pt 2):130-139. PubMed ID: 28827132 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Samberg ME; Oldenburg SJ; Monteiro-Riviere NA Environ Health Perspect; 2010 Mar; 118(3):407-13. PubMed ID: 20064793 [TBL] [Abstract][Full Text] [Related]
5. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Galandáková A; Franková J; Ambrožová N; Habartová K; Pivodová V; Zálešák B; Šafářová K; Smékalová M; Ulrichová J Hum Exp Toxicol; 2016 Sep; 35(9):946-57. PubMed ID: 26500221 [TBL] [Abstract][Full Text] [Related]
6. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
7. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Park YH; Kim JN; Jeong SH; Choi JE; Lee SH; Choi BH; Lee JP; Sohn KH; Park KL; Kim MK; Son SW Toxicology; 2010 Jan; 267(1-3):178-81. PubMed ID: 19850098 [TBL] [Abstract][Full Text] [Related]
8. Skin Toxicity Assessment of Silver Nanoparticles in a 3D Epidermal Model Compared to 2D Keratinocytes. Chen L; Wu M; Jiang S; Zhang Y; Li R; Lu Y; Liu L; Wu G; Liu Y; Xie L; Xu L Int J Nanomedicine; 2019; 14():9707-9719. PubMed ID: 31849463 [TBL] [Abstract][Full Text] [Related]
9. Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Franchi LP; Manshian BB; de Souza TA; Soenen SJ; Matsubara EY; Rosolen JM; Takahashi CS Toxicol In Vitro; 2015 Oct; 29(7):1319-31. PubMed ID: 26028148 [TBL] [Abstract][Full Text] [Related]
10. Quantitative assessment of primary skin irritants in vitro in a cytotoxicity model: comparison with in vivo human irritation tests. Wilhelm KP; Böttjer B; Siegers CP Br J Dermatol; 2001 Nov; 145(5):709-15. PubMed ID: 11736893 [TBL] [Abstract][Full Text] [Related]
11. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582 [TBL] [Abstract][Full Text] [Related]
12. Survival Mechanisms and Xenobiotic Susceptibility of Keratinocytes Exposed to Metal-Derived Nanoparticles. Montesinos-Cruz V; Rose J; Pappa A; Panayiotidis MI; De Vizcaya-Ruiz A; Franco R Chem Res Toxicol; 2020 Feb; 33(2):536-552. PubMed ID: 31927885 [TBL] [Abstract][Full Text] [Related]
13. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Kiss B; Bíró T; Czifra G; Tóth BI; Kertész Z; Szikszai Z; Kiss AZ; Juhász I; Zouboulis CC; Hunyadi J Exp Dermatol; 2008 Aug; 17(8):659-67. PubMed ID: 18312389 [TBL] [Abstract][Full Text] [Related]
14. The usefulness of toxicogenomics for predicting acute skin irritation on in vitro reconstructed human epidermis. Borlon C; Godard P; Eskes C; Hartung T; Zuang V; Toussaint O Toxicology; 2007 Nov; 241(3):157-66. PubMed ID: 17928126 [TBL] [Abstract][Full Text] [Related]
15. Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate. De Jongh CM; Verberk MM; Withagen CE; Jacobs JJ; Rustemeyer T; Kezic S Contact Dermatitis; 2006 Jun; 54(6):325-33. PubMed ID: 16787454 [TBL] [Abstract][Full Text] [Related]
16. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Crosera M; Prodi A; Mauro M; Pelin M; Florio C; Bellomo F; Adami G; Apostoli P; De Palma G; Bovenzi M; Campanini M; Filon FL Int J Environ Res Public Health; 2015 Aug; 12(8):9282-97. PubMed ID: 26262634 [TBL] [Abstract][Full Text] [Related]
17. Toxicity assessment of six titanium dioxide nanoparticles in human epidermal keratinocytes. Zhang LW; Monteiro-Riviere NA Cutan Ocul Toxicol; 2019 Mar; 38(1):66-80. PubMed ID: 30265130 [TBL] [Abstract][Full Text] [Related]
18. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Wu J; Liu W; Xue C; Zhou S; Lan F; Bi L; Xu H; Yang X; Zeng FD Toxicol Lett; 2009 Dec; 191(1):1-8. PubMed ID: 19501137 [TBL] [Abstract][Full Text] [Related]
19. On the course of the irritant reaction after irritation with sodium lauryl sulphate. Gloor M; Senger B; Langenauer M; Fluhr JW Skin Res Technol; 2004 Aug; 10(3):144-8. PubMed ID: 15225263 [TBL] [Abstract][Full Text] [Related]
20. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Kim JS; Song KS; Sung JH; Ryu HR; Choi BG; Cho HS; Lee JK; Yu IJ Nanotoxicology; 2013 Aug; 7(5):953-60. PubMed ID: 22417112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]