These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 27439971)
21. Development of CeO Morlando A; Chaki Borrás M; Rehman Y; Bakand S; Barker P; Sluyter R; Konstantinov K J Mater Chem B; 2020 May; 8(18):4016-4028. PubMed ID: 32347289 [TBL] [Abstract][Full Text] [Related]
22. Effects of metal oxide nanoparticles on healthy and psoriasis-like human epidermal keratinocytes in vitro. Tan LY; Setyawati MI; Ng KW Arch Toxicol; 2024 Nov; 98(11):3689-3711. PubMed ID: 39186148 [TBL] [Abstract][Full Text] [Related]
24. Human barrier formation and reaction to irritation. Fartasch M Curr Probl Dermatol; 1995; 23():95-103. PubMed ID: 9035933 [No Abstract] [Full Text] [Related]
25. Changes in keratinocyte differentiation following mild irritation by sodium dodecyl sulphate. Le M; Schalkwijk J; Siegenthaler G; van de Kerkhof PC; Veerkamp JH; van der Valk PG Arch Dermatol Res; 1996 Oct; 288(11):684-90. PubMed ID: 8931871 [TBL] [Abstract][Full Text] [Related]
26. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants. Suihko C; Serup J Skin Res Technol; 2008 Nov; 14(4):498-503. PubMed ID: 18937788 [TBL] [Abstract][Full Text] [Related]
27. A catch-up validation study on reconstructed human epidermis (SkinEthic RHE) for full replacement of the Draize skin irritation test. Alépée N; Tornier C; Robert C; Amsellem C; Roux MH; Doucet O; Pachot J; Méloni M; de Brugerolle de Fraissinette A Toxicol In Vitro; 2010 Feb; 24(1):257-66. PubMed ID: 19733228 [TBL] [Abstract][Full Text] [Related]
28. Comparison of irritant potential of shampoos using cultured human epidermal keratinocytes model and patch test reaction measured by laser Doppler flowmetry. Eun HC; Jung SY Contact Dermatitis; 1994 Mar; 30(3):168-71. PubMed ID: 8187517 [TBL] [Abstract][Full Text] [Related]
29. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Gaiser BK; Fernandes TF; Jepson M; Lead JR; Tyler CR; Stone V Environ Health; 2009 Dec; 8 Suppl 1(Suppl 1):S2. PubMed ID: 20102587 [TBL] [Abstract][Full Text] [Related]
30. Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin. Adachi K; Yamada N; Yoshida Y; Yamamoto O Exp Dermatol; 2013 Apr; 22(4):278-83. PubMed ID: 23528214 [TBL] [Abstract][Full Text] [Related]
31. Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance. Frieke Kuper C; Gröllers-Mulderij M; Maarschalkerweerd T; Meulendijks NM; Reus A; van Acker F; Zondervan-van den Beuken EK; Wouters ME; Bijlsma S; Kooter IM Toxicol In Vitro; 2015 Mar; 29(2):389-97. PubMed ID: 25448805 [TBL] [Abstract][Full Text] [Related]
32. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO Montalvo-Quiros S; Luque-Garcia JL Food Chem Toxicol; 2019 May; 127():197-205. PubMed ID: 30910687 [TBL] [Abstract][Full Text] [Related]
33. An approach for development of alternative test methods based on mechanisms of skin irritation. Osborne R; Perkins MA Food Chem Toxicol; 1994 Feb; 32(2):133-42. PubMed ID: 8132172 [TBL] [Abstract][Full Text] [Related]
34. In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. Strickland JD; Lefew WR; Crooks J; Hall D; Ortenzio JN; Dreher K; Shafer TJ Nanotoxicology; 2016; 10(5):619-28. PubMed ID: 26593696 [TBL] [Abstract][Full Text] [Related]
35. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Welss T; Basketter DA; Schröder KR Toxicol In Vitro; 2004 Jun; 18(3):231-43. PubMed ID: 15046769 [TBL] [Abstract][Full Text] [Related]
36. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Chen IC; Hsiao IL; Lin HC; Wu CH; Chuang CY; Huang YJ Environ Toxicol Pharmacol; 2016 Oct; 47():108-118. PubMed ID: 27664952 [TBL] [Abstract][Full Text] [Related]
37. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Schneider T; Westermann M; Glei M Arch Toxicol; 2017 Nov; 91(11):3517-3527. PubMed ID: 28466231 [TBL] [Abstract][Full Text] [Related]
38. Effects of particle size and coating on nanoscale Ag and TiO₂ exposure in zebrafish (Danio rerio) embryos. Osborne OJ; Johnston BD; Moger J; Balousha M; Lead JR; Kudoh T; Tyler CR Nanotoxicology; 2013 Dec; 7(8):1315-24. PubMed ID: 23035978 [TBL] [Abstract][Full Text] [Related]
39. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Li D; Morishita M; Wagner JG; Fatouraie M; Wooldridge M; Eagle WE; Barres J; Carlander U; Emond C; Jolliet O Part Fibre Toxicol; 2016 Aug; 13(1):45. PubMed ID: 27542346 [TBL] [Abstract][Full Text] [Related]
40. Examples of the use of cell cultures in skin irritancy assessment. Rougier A Curr Probl Dermatol; 1995; 22():214-30. PubMed ID: 7587327 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]