These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Comparison of "Polarization inversion with spin exchange at magic angle" and "geometric analysis of labeled alanines" methods for transmembrane helix alignment. Vostrikov VV; Grant CV; Daily AE; Opella SJ; Koeppe RE J Am Chem Soc; 2008 Sep; 130(38):12584-5. PubMed ID: 18763771 [TBL] [Abstract][Full Text] [Related]
24. Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Koehorst RB; Spruijt RB; Vergeldt FJ; Hemminga MA Biophys J; 2004 Sep; 87(3):1445-55. PubMed ID: 15345527 [TBL] [Abstract][Full Text] [Related]
25. The effects of hydrophobic mismatch between phosphatidylcholine bilayers and transmembrane alpha-helical peptides depend on the nature of interfacially exposed aromatic and charged residues. de Planque MR; Boots JW; Rijkers DT; Liskamp RM; Greathouse DV; Killian JA Biochemistry; 2002 Jul; 41(26):8396-404. PubMed ID: 12081488 [TBL] [Abstract][Full Text] [Related]
26. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. Krishnakumar SS; London E J Mol Biol; 2007 Nov; 374(3):671-87. PubMed ID: 17950311 [TBL] [Abstract][Full Text] [Related]
27. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling. Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900 [TBL] [Abstract][Full Text] [Related]
28. Comparative analysis of the orientation of transmembrane peptides using solid-state (2)H- and (15)N-NMR: mobility matters. Grage SL; Strandberg E; Wadhwani P; Esteban-Martín S; Salgado J; Ulrich AS Eur Biophys J; 2012 May; 41(5):475-82. PubMed ID: 22453992 [TBL] [Abstract][Full Text] [Related]
29. Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix. Sustich SJ; Afrose F; Greathouse DV; Koeppe RE Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183134. PubMed ID: 31738898 [TBL] [Abstract][Full Text] [Related]
30. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide. McKay MJ; Fu R; Greathouse DV; Koeppe RE J Phys Chem B; 2019 Sep; 123(38):8034-8047. PubMed ID: 31483653 [TBL] [Abstract][Full Text] [Related]
31. Helical distortion in tryptophan- and lysine-anchored membrane-spanning alpha-helices as a function of hydrophobic mismatch: a solid-state deuterium NMR investigation using the geometric analysis of labeled alanines method. Daily AE; Greathouse DV; van der Wel PC; Koeppe RE Biophys J; 2008 Jan; 94(2):480-91. PubMed ID: 17827234 [TBL] [Abstract][Full Text] [Related]
32. The membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent. Sani MA; Le Brun AP; Rajput S; Attard T; Separovic F Biophys J; 2023 Mar; 122(6):1058-1067. PubMed ID: 36680343 [TBL] [Abstract][Full Text] [Related]
33. Structure and dynamics of the lipid modifications of a transmembrane α-helical peptide determined by ²H solid-state NMR spectroscopy. Penk A; Müller M; Scheidt HA; Langosch D; Huster D Biochim Biophys Acta; 2011 Mar; 1808(3):784-91. PubMed ID: 21192915 [TBL] [Abstract][Full Text] [Related]
34. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling. Anbazhagan V; Schneider D Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102 [TBL] [Abstract][Full Text] [Related]
35. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Sharpe S; Barber KR; Grant CW Biochemistry; 2000 May; 39(21):6572-80. PubMed ID: 10828974 [TBL] [Abstract][Full Text] [Related]
36. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
37. On the combined analysis of ²H and ¹⁵N/¹H solid-state NMR data for determination of transmembrane peptide orientation and dynamics. Vostrikov VV; Grant CV; Opella SJ; Koeppe RE Biophys J; 2011 Dec; 101(12):2939-47. PubMed ID: 22208192 [TBL] [Abstract][Full Text] [Related]
38. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. Meijberg W; Booth PJ J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874 [TBL] [Abstract][Full Text] [Related]
39. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
40. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Jones DH; Barber KR; VanDerLoo EW; Grant CW Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]