BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27440122)

  • 1. Proteomic discovery of host kinase signaling in bacterial infections.
    Richter E; Mostertz J; Hochgräfe F
    Proteomics Clin Appl; 2016 Oct; 10(9-10):994-1010. PubMed ID: 27440122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation.
    Guo M; Huang BX
    Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phosphoproteomics to characterize signaling networks.
    Rigbolt KT; Blagoev B
    Semin Cell Dev Biol; 2012 Oct; 23(8):863-71. PubMed ID: 22677334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics of host-bacterial interactions: new insights from dual perspectives.
    Sukumaran A; Woroszchuk E; Ross T; Geddes-McAlister J
    Can J Microbiol; 2021 Mar; 67(3):213-225. PubMed ID: 33027598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways.
    Kosako H; Nagano K
    Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response.
    Sharma K; Kumar C; Kéri G; Breitkopf SB; Oppermann FS; Daub H
    J Proteome Res; 2010 May; 9(5):2539-49. PubMed ID: 20222745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics.
    Tedford NC; Hall AB; Graham JR; Murphy CE; Gordon NF; Radding JA
    Proteomics; 2009 Mar; 9(6):1469-87. PubMed ID: 19294625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response.
    Zhang H; Sun J; Ye J; Ashraf U; Chen Z; Zhu B; He W; Xu Q; Wei Y; Chen H; Fu ZF; Liu R; Cao S
    J Proteome Res; 2015 Dec; 14(12):5157-68. PubMed ID: 26485063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technologies and challenges in large-scale phosphoproteomics.
    Engholm-Keller K; Larsen MR
    Proteomics; 2013 Mar; 13(6):910-31. PubMed ID: 23404676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques.
    Sugiyama N; Ishihama Y
    J Pharm Biomed Anal; 2016 Oct; 130():264-272. PubMed ID: 27301379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific analysis of bacterial phosphoproteomes.
    Macek B; Mijakovic I
    Proteomics; 2011 Aug; 11(15):3002-11. PubMed ID: 21726046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteome characterization reveals that Sendai virus infection activates mTOR signaling in human epithelial cells.
    Öhman T; Söderholm S; Paidikondala M; Lietzén N; Matikainen S; Nyman TA
    Proteomics; 2015 Jun; 15(12):2087-97. PubMed ID: 25764225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions.
    Yang Y; Hu M; Yu K; Zeng X; Liu X
    Protein Cell; 2015 Apr; 6(4):265-74. PubMed ID: 25722051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks.
    Newman RH; Zhang J
    Methods Enzymol; 2017; 589():133-170. PubMed ID: 28336062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Direct Kinase Substrates via Kinase Assay-Linked Phosphoproteomics.
    Xue L; Arrington JV; Tao WA
    Methods Mol Biol; 2016; 1355():263-73. PubMed ID: 26584932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks.
    Jers C; Soufi B; Grangeasse C; Deutscher J; Mijakovic I
    Expert Rev Proteomics; 2008 Aug; 5(4):619-27. PubMed ID: 18761471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in kinase signaling network profiling by mass spectrometry.
    Franciosa G; Locard-Paulet M; Jensen LJ; Olsen JV
    Curr Opin Chem Biol; 2023 Apr; 73():102260. PubMed ID: 36657259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.