These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27440245)

  • 1. Noninvasive brain stimulation enhances sustained muscle contractions by reducing neuromuscular fatigue: implications for rehabilitation.
    Cunningham DA
    J Neurophysiol; 2017 Mar; 117(3):1215-1217. PubMed ID: 27440245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between muscle pain and fatigue.
    Mastaglia FL
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S178-80. PubMed ID: 23182635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of motor neuron drive in muscle fatigue.
    Ranieri F; Di Lazzaro V
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S157-61. PubMed ID: 23182631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hypnotic suggestion on knee extensor neuromuscular properties in resting and fatigued states.
    Dittrich N; Agostino D; Antonini Philippe R; Guglielmo LGA; Place N
    PLoS One; 2018; 13(4):e0195437. PubMed ID: 29684047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high-altitude exposure on supraspinal fatigue and corticospinal excitability and inhibition.
    Marillier M; Arnal PJ; Le Roux Mallouf T; Rupp T; Millet GY; Verges S
    Eur J Appl Physiol; 2017 Aug; 117(8):1747-1761. PubMed ID: 28647868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans.
    Seifert T; Petersen NC
    Acta Physiol (Oxf); 2010 Jul; 199(3):317-26. PubMed ID: 20136794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential interests and limits of magnetic and electrical stimulation techniques to assess neuromuscular fatigue.
    Millet GY; Bachasson D; Temesi J; Wuyam B; Féasson L; Vergès S; Lévy P
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S181-6. PubMed ID: 23182636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles.
    Smith JL; Martin PG; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2007 Aug; 103(2):560-8. PubMed ID: 17463302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN; Nordlund MM
    Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue.
    Amann M; Sidhu SK; McNeil CJ; Gandevia SC
    J Physiol; 2022 Dec; 600(24):5203-5214. PubMed ID: 36326193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles.
    Alexandre F; Derosiere G; Papaiordanidou M; Billot M; Varray A
    Acta Physiol (Oxf); 2015 May; 214(1):124-34. PubMed ID: 25740017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again.
    Taylor JL; Amann M; Duchateau J; Meeusen R; Rice CL
    Med Sci Sports Exerc; 2016 Nov; 48(11):2294-2306. PubMed ID: 27003703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles.
    Todd G; Petersen NT; Taylor JL; Gandevia SC
    Exp Brain Res; 2003 Jun; 150(3):308-13. PubMed ID: 12677313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM; Cafarelli E
    J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
    Hoffman BW; Oya T; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2009 Jul; 107(1):112-20. PubMed ID: 19443741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle.
    Post M; Bayrak S; Kernell D; Zijdewind I
    J Appl Physiol (1985); 2008 Jul; 105(1):70-82. PubMed ID: 18450978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.