BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27440308)

  • 1. Organics on oxidic metal surfaces: a first-principles DFT study of PMDA and ODA fragments on the pristine and mildly oxidized surfaces of Cu(111).
    Park JH; Lee JH; Soon A
    Phys Chem Chem Phys; 2016 Aug; 18(31):21893-902. PubMed ID: 27440308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In search of non-conventional surface oxidic motifs of Cu on Au(111).
    Lee T; Lee Y; Kang K; Soon A
    Phys Chem Chem Phys; 2016 Mar; 18(10):7349-58. PubMed ID: 26899930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections.
    Freire RL; Kiejna A; Da Silva JL
    Phys Chem Chem Phys; 2016 Oct; 18(42):29526-29536. PubMed ID: 27747329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface characteristics at an organic/metal junction: pentacene on Cu stepped surfaces.
    Matos J; Kara A
    J Phys Condens Matter; 2016 Nov; 28(44):445001. PubMed ID: 27604645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Mediated Hydrogen Bonding of Proteinogenic α-Amino Acids on Silicon.
    Rahsepar FR; Moghimi N; Leung KT
    Acc Chem Res; 2016 May; 49(5):942-51. PubMed ID: 27014956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene.
    Yu YX
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16267-75. PubMed ID: 25216389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the work function of stepped metal surfaces by adsorption of organic molecules.
    Jiang Y; Li J; Su G; Ferri N; Liu W; Tkatchenko A
    J Phys Condens Matter; 2017 May; 29(20):204001. PubMed ID: 28345536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces.
    Bedolla PO; Feldbauer G; Wolloch M; Eder SJ; Dörr N; Mohn P; Redinger J; Vernes A
    J Phys Chem C Nanomater Interfaces; 2014 Aug; 118(31):17608-17615. PubMed ID: 25126156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions.
    Hanke F; Dyer MS; Björk J; Persson M
    J Phys Condens Matter; 2012 Oct; 24(42):424217. PubMed ID: 23031831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of van der Waals forces in water adsorption on metals.
    Carrasco J; Klimeš J; Michaelides A
    J Chem Phys; 2013 Jan; 138(2):024708. PubMed ID: 23320714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking van der Waals density functionals with experimental data: potential-energy curves for H2 molecules on Cu(111), (100) and (110) surfaces.
    Lee K; Berland K; Yoon M; Andersson S; Schröder E; Hyldgaard P; Lundqvist BI
    J Phys Condens Matter; 2012 Oct; 24(42):424213. PubMed ID: 23032859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems.
    Ruiz VG; Liu W; Zojer E; Scheffler M; Tkatchenko A
    Phys Rev Lett; 2012 Apr; 108(14):146103. PubMed ID: 22540809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures.
    Toyoda K; Hamada I; Lee K; Yanagisawa S; Morikawa Y
    J Chem Phys; 2010 Apr; 132(13):134703. PubMed ID: 20387950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface.
    Morbec JM; Kratzer P
    J Chem Phys; 2017 Jan; 146(3):034702. PubMed ID: 28109219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Importance of van der Waals Stabilization in Strongly Chemically Bonded Surfaces: Cu(110):O.
    Bamidele J; Brndiar J; Gulans A; Kantorovich L; Štich I
    J Chem Theory Comput; 2013 Dec; 9(12):5578-84. PubMed ID: 26592291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical adsorption: theory of van der Waals interactions between particles and clean surfaces.
    Tao J; Rappe AM
    Phys Rev Lett; 2014 Mar; 112(10):106101. PubMed ID: 24679308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110) Surfaces.
    Cheng L
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of N2O on Cu(100): a combined scanning tunneling microscopy and density functional theory study.
    Franke KJ; Fernández-Torrente I; Pascual JI; Lorente N
    Phys Chem Chem Phys; 2008 Mar; 10(12):1640-7. PubMed ID: 18338064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DFT study of adsorption of imidazole, triazole, and tetrazole on oxidized copper surfaces: Cu₂O(111) and Cu₂O(111)-w/o-CuCUS.
    Gustinčič D; Kokalj A
    Phys Chem Chem Phys; 2015 Nov; 17(43):28602-15. PubMed ID: 26443103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the adsorption of CuPc and ZnPc on noble metal surfaces by combining quantum-mechanical modelling and photoelectron spectroscopy.
    Huang YL; Wruss E; Egger DA; Kera S; Ueno N; Saidi WA; Bucko T; Wee AT; Zojer E
    Molecules; 2014 Mar; 19(3):2969-92. PubMed ID: 24609018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.